Module NameDownload


Sl.No Chapter Name MP4 Download Transcript Download
1Lec 1: Introduction, ConstraintsDownloadPDF unavailable
2Lec 2: Generalized Coordinates, Configuration SpaceDownloadPDF unavailable
3Lec 3: Principle of Virtual WorkDownloadPDF unavailable
4Lec 4: D'Alembert's PrincipleDownloadPDF unavailable
5Lec 5: Lagrange's EquationsDownloadPDF unavailable
6Lec 6: Hamilton's PrincipleDownloadPDF unavailable
7Lec 7: Variational Calculus, Lagrange's EquationsDownloadPDF unavailable
8Lec 8: Conservation Laws and SymmetriesDownloadPDF unavailable
9Lec 9: Velocity Dependent Potentials, Non-holonomic ConstraintsDownloadPDF unavailable
10Lec 10: An Example: Hoop on a rampDownloadPDF unavailable
11Lec 11: Phase SpaceDownloadPDF unavailable
12Lec 12: Legendre TransformsDownloadPDF unavailable
13Lec 13: Hamilton's EquationsDownloadPDF unavailable
14Lec 14: Conservation Laws, Routh's procedureDownloadPDF unavailable
15Lec 15: An Example:Bead on Spinning RingDownloadPDF unavailable
16Lec 16: Canonical TransformationsDownloadPDF unavailable
17Lec 17: Symplectic ConditionDownloadPDF unavailable
18Lec 18: Canonical Invariants, Harmonic OscillatorDownloadPDF unavailable
19Lec 19: Poisson Bracket FormulationDownloadPDF unavailable
20Lec 20: Infinitesimal Canonical TransformationsDownloadPDF unavailable
21Lec 21: Symmetry Groups of Mechanical SystemsDownloadPDF unavailable
22Lec 22: Hamilton Jacobi TheoryDownloadPDF unavailable
23Lec 23: Action-Angle VariablesDownloadPDF unavailable
24Lec 24: Separation of Variables and ExamplesDownloadPDF unavailable
25Lec 25: Continuous Systems and FieldsDownloadPDF unavailable
26Lec 26: The Stress-Energy TensorDownloadPDF unavailable
27Lec 27: Hamiltonian FormulationDownloadPDF unavailable