NPTEL Syllabus

Virtual Reality - Video course

COURSE OUTLINE

Fundamentals of virtual reality systems, including geometric modeling, transformations, graphical rendering, optics, the human vision, auditory, and vestibular systems, interface design, human factors, developer recommendations, and technological issues.

COURSE DETAIL

<table>
<thead>
<tr>
<th>Module No:</th>
<th>Topic</th>
</tr>
</thead>
</table>
| **Module I:** Introduction | 1. Course mechanics
2. Goals and VR definitions
3. Historical perspective
4. Birds-eye view (general)
5. Birds-eye view (general), contd
6. Birds-eye view (hardware)
7. Birds-eye view (software)
8. Birds-eye view (sensation and perception) |
| **Module II:** Geometry of Virtual Worlds | 9. Geometric modeling
10. Transforming models
11. Matrix algebra and 2D rotations
12. 3D rotations and yaw, pitch, and roll
13. 3D rotations and yaw, pitch, and roll, contd
14. Axis-angle representations
15. Quaternions
16. Converting and multiplying rotations
17. Converting and multiplying rotations, contd
18. Homogeneous transforms
19. The chain of viewing transforms
20. Eye transforms
21. Eye transforms, contd
22. Canonical view transform
23. Viewport transform
24. Viewport transform, contd |
| **Module III:** Light and Optics | 25. Three interpretations of light
26. Refraction
27. Simple lenses
28. Diopeters
29. Imaging properties of lenses |

Pre-requisites:
Basic maths and exposure to engineering

Additional Reading:
- Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, and Ivan Poupyrev, 3D User Interfaces, Addison-Wesley, 2005.

Coordinators:
Prof Steven LaValle
IITM & UIUC
| Module IV: Visual Physiology | 30. Lens aberrations
31. Optical system of eyes |
|----------------------------|------------------------|
| Module V: Visual Perception | 32. Photoreceptors
33. Sufficient resolution for VR
34. Light intensity
35. Eye movements
36. Eye movements, contd
37. Eye movement issues for VR
38. Neuroscience of vision |
|----------------------------|------------------------|
| Module VI: Tracking Systems | 39. Depth perception
40. Depth perception, contd
41. Motion perception
42. Frame rates and displays
43. Frame rates and displays contd |
|----------------------------|------------------------|
| Module VII: Visual Rendering | 44. Overview
45. Orientation tracking
46. Tilt drift correction
47. Yaw drift correction
48. Tracking with a camera
49. Perspective n-point problem
50. Filtering
51. Lighthouse approach |
|----------------------------|------------------------|
| Module VIII: Audio | 52. Visual Rendering-Overview
53. Visual Rendering-overview, contd
54. Shading models
55. Rasterization
56. Pixel shading
57. VR-specific problems
58. Distortion shading
59. Post-rendering image warp |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>----------------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| Module VII: Visual Rendering | 60. Physics and physiology
61. Auditory perception
62. Auditory localization
63. Rendering
64. Spatialization and display
65. Combining other senses |
Module IX: Interfaces

66. Interfaces - overview
67. Locomotion
68. Manipulation
69. System control
70. Social interaction
71. Evaluation of VR Systems

References: