Good afternoon. This is lecture 15 on course in Advanced Structural Analysis.

Refer Slide Time: 00:20)
We are about to complete this topic of Review of basic structural analysis II. We were looking at displacement methods and this is covered in part five in the book on Basic Structural Analysis.
So you will see that the problems that you need to solve fall in four broad categories, we finished the first two. In this session we will look at how to solve problems by the displacement method when you have multiple unknown rotations but, no unknown translations. That is the fourth type, which we will see later.

If you recall we had done this problem in the last session. This is a continuous beam subjected to relative settlement of two supports, we had solved this problem by slope
deflection method. Let us see how to solve such problems by the moment distribution method.

So, the first step is to convert the relative settlements to chord rotations. There are three members. You can work out those chord rotations. We have done this in the earlier session. You will notice that the member CD is the one which undergoes an anticlockwise rotations, so you give a negative sign to that.

What is the degree of kinematic indeterminacy in this problem?

Two, I mean we can reduce it to two and the unknown rotations are at B and C, so at B and C we need to do moment distribution up till now we have done problems which needed moment distribution only at one location and you need to do it in one step and you get an exact solution but, now when you have more than one location where you do distribution it gets to be a little tricky.

(Refer Slide Time: 02:22)

So, let us see how to do that. Your first job is to find fixed end moments. Are there any fixed end moments in this beam subject to support settlements?, not due to external loads but, you need to calculate the additional fixed end moments you get due to this chord rotations and I hope you remember the formulas. These are easy to work out. In the slope deflection method, you do not call them fixed end moments they come in the slope deflection equations under chord rotation but, they are known quantities.
In the moment distribution method, you have to explicitly calculate these quantities and we call them additional fixed end moments right? And what is the next step in moment distribution method after you get the fixed end moments? Up to this step we have done in the last class.

What do we do next? Distribution factors, carry over factors. Shall we do that?

You have to find out distribution factors at B and C. Take B it is 3 EI by L and the I’s are different for the three elements and 4 E I by L for the middle element, right? So this is straightforward you do not get clean integers here (Refer Slide Time: 02:22), so you can find them to as high and order of accuracy as you wish so here I have given four significant figures, so I hope you know how to calculate the distribution factors at joints B and C, which is the ratio of k_{BA} to k_{BC} and k_{CB} to k_{CD}. There is a support at D and as far as carry over factors are concerned you do not carry over to the simple supports, so you have only a carryover from B to C and from C to B and its equal to half.

(Refer Slide Time: 04:27)

So, this is the distribution table, as you can see from the number of lines I have drawn you do not get it in one cycle. So, how do we do this? First you write down the element numbers, write down the distribution factors please note at any joint the sum of all the distribution factors should add up to one. Then you write down the carry over factors and you write down the fixed end moments. In this case the fixed end moments are caused by the support settlements right?
Now, let us also give it with physical meaning. You have this beam in which you have arrested the joints B and C. You got those fixed end moments and at the joint B wherever you arrested it you got a moment, which you need to release and when you release it, it is like balancing that moment which you get by distributing the moments to the two ends. So, now you have to take minus 100.74, minus 221.87 add it up to get minus some quantity and that total you have to distribute to the two ends, so how do you do that? And when you do that you also have to do a carryover then you go to the next joint and do the same thing.

Now, there are many ways it can be done and the solution procedure follows pattern technique called relaxation method. It is a numerical way of solving simultaneous equations. If you notice the superiority of the moment distribution method over the slope deflection method is that we do not calculate theta B and theta C at all, we directly get the moments, whereas in the slope deflections methods you calculate theta B theta C and plug those values back into the slope deflection methods.

(Refer Slide Time: 04:27) So here, there are many ways to do it. The one that we recommend is, you first do at this joint if you have your calculators you can work out it is pretty straight forward you add up the total and distribute 0.4497 to the left end and to the right end. So at this stage if you add up all the moments at that joint it should turn out to be zero.

Now, the suggestion is do not do the carry over now, we will do the carry over later for all the joints in one go. It does not really matter because the end you have to balance. So this is what we call the first cycle of balancing and then you move over to the next joint and do exactly the same thing you will get something right? It is interesting to note in the second joint you seem to have smaller numbers to distribute in this particular instance. It need not to be so for all loading. Now, it is a time to do the carry over.

How do you do the carry over?

You can put some arrow marks to help you. 50 percent of the moment gets carried over, plus half. So is this self-explanatory? Everything is clear?

Now, after you carried over at the joint B, what is the unbalanced moment? It is plus 10.43, so what should you do now? Again balance it, so that is what you do and you have
to balance 88.77 at joint C, you can do all that in one step, is it clear? It is a simple thing you can do it manually very fast. Now what do you do? (Refer Slide Time: 04:27) So this is balance number two, carry over again but, as you go down, the quantities which you carry over are becoming smaller and smaller, so when do you stop?

What?

Less than some percent.

Yea, when you done enough number of cycles then you got tired. In practice you see the power of the moment distribution method is lost if you have to put in lot of effort to it. So usually in the olden days they stop to two cycles and they said we live with the error but, today we do not do that, we say that stop till you can tolerate. You accept as an error that unbalanced moment and it is left to you. It is very good if you say if it is less than 1 percent of the maximum moment. Some people say 5 percent.

So, you can keep on doing this and we have done four cycles here (Refer Slide Time: 04:27) and you should end with the balancing because if you leave an unbalanced moment and then you will not satisfy equilibrium. So we leave, we stop with the fifth cycle of balancing and then we add up the totals and when you add up one way to know whether you got this right to some extent is that when you add up the two moments M_{BA} and M_{BC} they should add up to zero, because there is no net moment there, same at CB and CD, so you got the answers but, there is a little error but, that is a negligible error right? Also in carry over you will have a little rounding off problem because, you have to round off to the decimal places. But, we will leave with that.
This is how you do moment distribution method when you have more than one joint is it clear? Here I have got an example of two joints, if you have three joints you do parallelly three but, then today we live in the world of computers and we say it is not worth it, so it is really worth it if you have only one member, one rotation then you do it very fast and it is an instant solutions 100 percent accurate. This is not that accurate compared to slope deflection method and you get exactly the same solution as you get in slope deflection method.
Now, again I want to go back historically, this is how they did multi storied frames in the olden days I mean it is too much to analyze the full frame, so we have this concept of substitute frame you take anyone floor and you assume that there is not much interaction between one floor and the next floor and you can prove this using Mueller bridge Law’s principle. And as long as there is no sway in the frame, you can isolate one frame and assume the columns should be fixed at the top and bottom. For example, what you can do in a three bay multistoried frame under gravity loads not under lateral load because under lateral loads it will sway.

Now I made our job easier, because I have deliberately chosen a symmetric loading condition in which case you can take further advantage and cut it in the middle and what do you put there?

Guided fixed support

Guided fixed support okay, guided roller support and you know very well how to analyze this. (Refer Slide Time: 10:33) You have two unknown rotations here, theta A and theta B and you need not worry about that delta C, because we know the modified stiffness. How do we proceed?

(Refer Slide Time: 11:58)

Well, first we calculate the fixed end moments for the column elements they are no fixed end moments because there is no lateral element on those columns. For the beam
elements AB and BC dash I hope by now you know how to do those calculations. So let us assume you can calculate these moments correctly. Then you need to find the distribution and carry over factors.

So, let us pause for a while and see how to do this. See at this joint A, you have three elements, so you have k_{AF}, k_{AE} and k_{AB} right? So for k_{AF} it is 4 EI by the height which is 3.5 for k_{AE} likewise it is 4 EI by 3.5 and for k_{AB}, it is 4 EI but, the EI is, 3 EI divided by the span which is 8. Are you getting it?

So, you got three members meeting at that joint, so when you make the table you have to arrange it in such a way that you can handle all of them simultaneously and the same thing you do at joint B. At joint B the only point to remember, here you have four elements is that the stiffness of BC will be EI and that I is 2I divided by…, is it clear? So, you can work this out, I want to get the concept clear. So, let us say you got this then it is easy. You make your table. Carry over factors from B to A and A to B is plus half and from B to C dash it is minus 1, clear? Make your table.

(Refer Slide Time: 13:53)

So, let us not do this, let us just see how it is done, it is exactly the same way you have to arrange your table in such a manner that you can fit in most of the quantities. Nobody does this anymore, so it is a little more of historical importance but, I just wanted you to know that this is how it can be done then you can draw your free bodies and bending
moment diagram. This is just a demonstration of how moment distribution method was widely used to design buildings till about the 1980s or 1985. Very common.

(Refer Slide Time: 14:34)

Today we do not do it because we got nice softwares, which do it automatically for us.

What is this structure that we see here?

It is called a box culvert, where is it used?

((()))

It has many purposes you can use it for drainage but, let say you got ditch in front of your house and you want to bring your car across. Instead of putting a slab with a separate foundation and there is a drain going below you can put a neat box like this which is very efficient very stiff and it is called a box culvert right? And if you had a concentrated load on that box culvert say due to your vehicular load coming then it will be balanced by a soil pressure from below which is conveniently assumed here to be uniformly distributed. What are those triangular pressures you get on this side? Yeah, they come from the soil and may be if there is water around there, so it is a self-equilibrating system. This is a self-equilibrating system you do not talk about supports here okay? It is self-equilibrating and you need to analyze this and you can do it beautifully by either moment distribution or slope deflection method but, there is
symmetry here, isn’t it? So, why do not we take advantage of that? When you do that it will look like that. Divide that load 18 by 2 you get 40 right?

Now, what is a degree of indeterminacy here? Two, theta A and theta B so can you find out the fixed end moment? Yes, you know all the formulas. So let us say you know how to do all the fixed end moments. Of course, you are more used to beams with loads acting downward, so when the loads are acting upward you have to stand on your head in your mind and get the directions correct. Clockwise is always positive and anticlockwise is always negative, so that is the only place where you can make a mistake.

Okay, then the distribution factors are easy to calculate. You are taking advantage of all the modified stiffness. Remember, they are only three magic numbers 4 EI by L is very normal 3 EI by L is if you have a hinge support at the extreme end and Ei by L is when you have a guided fixed support, is it clear?

(Refer Slide Time: 17:07)
So, you can work out these and you can work out your carry over factors. Do your table.

Sir, why did you say it is triangular load?

Sorry.

Triangular load.

Soil pressure. When it acts on a retaining wall. Have you gone through a geotechnical course? You are going through, so you will know that. Take water. If it is is hydrostatic? If it is water Pascal’s law says that, the pressure is the same in all directions. If it soil it is not the same, so the lateral pressure it is called the active earth pressure is less than the vertical pressure how much less depends on the soil properties, so if you have sandy soil it is roughly around one-third, so whatever vertical load you are applying one-third of that pressure goes, so it is a linear variation. It is conveniently assumed, this is Rankine’s soil pressure profile. In structural analysis, we say somebody is find out those loads and given it to you but, in real life you need to work out those loads yourself. So that is where you have to ask those questions.
Then you get a beautiful, symmetric across one plane diagram okay. It is very fast so the structure looked little formidable when you saw it in the beginning but, now you see it is quite easy to handle. Ok.

So, the idea is for you to know that such things can be done you done the assignments but, beyond that we are going to do everything automatically using matrix methods. So it is it is important to know that this is how many structures were analyzed for many years.
Now, we go to the fourth category, the toughest that is when you have sway which you cannot get rid of it is unknown it is not like a support settlement which is known. The chord rotations are unknown. In some cases you can take advantage of them. We will look at those cases in tomorrow’s class for the time being, let us look at how to deal with this.

(Refer Slide Time: 19:40)

So, if you have a symmetric portal frame with the symmetric loading what is the deflected shape? Will it be also symmetric? Yes, it will be symmetric. If the loading is slightly eccentric you have an asymmetric loading then, the question I want to ask you is, is it going to sway to the lefts or is it going to sway to the right? What is your hunch?

To the right side.

Did we discussed this earlier?

Okay, now what you need to do to get it intuitively right is keep pushing the load to the extreme left and press it down hard and your mind will tell you which way is going to move. But you can also give a very beautiful analytical way of explaining why it is going sway to the right. Let us look at that. Let us say you do moment distribution of this frame okay, you have two joints where you have unknown rotations. You can do it right?

Will you get the correct answer? You will get some moments but, you will have a problem with the answers you get. What is the problem that you get? That is a problem
you get in moment distribution method not with slope deflection method. What is a degree of indeterminacy of such a frame?

Two.

But, there is a sway, so it is 3. So you cannot wish a way that sway degree of freedom. So the moment distribution method the way we have learnt till now where you have unknown rotations is not able to handle sway. So if you do by moment distribution method you are actually doing it for a braced frame which means without your knowledge you are not letting it sway that means there is a restraints there, right? So, you get something from the distribution table but, the frame you are analyzing is not the original frame but, a frame in which someone has arrested the sway degree of freedom right? And then your results will be correct for that problem.

Now, where do you think the moments will be more, in the left column or the right column? (Refer Slide Time: 19:40).

Let us take the beam. If it is a fixed beam where will the fixed end moments be more, left or right? Left, so do not you agree that it is not fully fixed, it is partially fixed. So those moments get affected and whatever moment you get in the beam end will be passed on equal and opposite to the column end. So do not you realize that the column on the left side is likely to have more bending moment at the top than on the right side, right? And the moment at the bottom is zero, because it is a hinged at the bottom.

Will you have a horizontal force at the bottom? Yes. What will be the value of that force? It will be the moment at the top of the column divided by the height of the column. So you will get two horizontal forces, which one will be more or will they be equal?

Equal and opposite.

Why do they have to be equal?

And opposite

((()})

Yes, right.
So to satisfy equilibrium where will that force have to go?

Hinge. That hinge. That artificial support.

Artificial support.

That is a key to it. You are right. So, if you do moment distribution method you will not be able to satisfy equilibrium because you will find you will need a net horizontal force the way I have shown you and then you have to do another analysis, which is called a pure sway analysis where you have a horizontal load acting. So this is a problem with moment distribution method that is, you need to do two distributions, one with the sway arrested and the other you have to figure out how much that sway then do that analysis, so it is not worth it and so, we would not follow moment distribution method beyond this point. We will say if you have such problems you can do it but, we have grown up and we do not do it that way, Ok. And here you can clearly see why it is going to sway to the right because the net load is going to act in that direction you have to reverse the load acting on your artificial restrain. This is a beautiful powerful left brain understanding of why the sway is always to the right okay.

(Refer Slide Time: 24:33)

Now, let us say how to deal with sway. I have suggested that do not deal directly with translation always deal with chord rotation, because they are much easier to deal with. So, you will have sway degrees of freedom in a frame like this to figure out how many
sway degrees of freedom you need to have you? You conveniently put hinges at all the junctions and let it sway like a mechanism then you will find there is one unknown degree of freedom here that is delta, is it clear?

So, the other way to do it is, at every joint in a plane frame you have two translational degrees of freedom. Any two orthogonal directions you can take vertical and horizontal, so, you have at A and D both are arrested, so you have four potential degrees of freedom at B and C agreed? Four translation degrees of freedom but, if you assume members to be axially rigid you are bringing in as many constraints as there are members. So, you have three constraints because three lengths remain unchanged the length of AB, the length of BC and the length of CD, so that is a clever way of figuring out how many independent sway degrees of freedom you have. Four potential translational degrees of freedom, three constraining equations because of the length 4 minus 3 is equal to 1, got it? And you can choose anyone in this case delta. And then you work out your chord rotations if delta is to the right positive then the chord rotation phi AB is delta by h and CD is also delta by h.

What happens if your roof is tilted? Okay, it is called a bent portal frame. Then also you have three members, four potential degrees of freedom 4 minus 3, 1 then also you have only one unknown and it is delta. Both will move parallely. Both the column will move parallely as shown here (Refer Slide Time: 24:33) and what is interesting is the beam does not have any chord rotation. Whether the beam is horizontal or inclined there is no chord rotation, so you will have sway you have chord rotation only in the vertical elements and the chord rotation AB is delta by h_1 the chord rotation in CD is delta by h_2, got it? So, we are going to increase the complexity now.
What do you do when you have frame like this? We will solve this problem tomorrow.

When do you encounter frames like this? Well you got a house in a hilly sites, Banjara Hills in Hyderabad may be and you went off from the first floor here and the ground floor there and your architect wants a fancy design with incline walls, so you can have a frame like that, you know your foundation are at two different levels, right? Then also you should remember even though it look complicate and this is a very interesting problem you do not need to solve it but, at least conceptually you should know how to solve it.

You still have only one sway degree of freedom. Why? Because four potential translations at B and C, three members, three constraining equations 4 minus 3, 1. You can still choose delta but, now your beam is going to have a chord rotation because if you play with it as you play with the Mecanno’s set, it is a mechanism, if you play with it if these are rigid members it will take a shape like this, agreed? And chord rotations for AB is simple it is phi AB, phi AB is delta by h_1 for CD also it simple it is delta by h_2 but, it is a little tricky when you calculate. You can use trigonometry and calculate and that is the formula that you get.

These book are available for you but, that is how you do it, this is how it was done in the olden days. In slope deflection method, you do not have to worry at all about these things you can do it directly. In the matrix method also it’s done directly.
If you have a pitch portal frame you can similarly, workout those equations do not worry too much about it.

(Refer Slide Time: 29:29)

Normally, our buildings do not look that funny, you do not have inclined column you do not have inclined beam. You have frames which are called reticulated frames made up of rectangles where your life is made easier and if you say axial deformations are negligible, then you have only one rotational unknown at every joint and one sway degree in every floor, right?

Why only one sway degree in every floor? Because all the joints in that floor will move like a rigid body okay, and there are serviceability limitations in a tall building. The maximum drift in the building should be limited. Usually it is height by 500 under lateral loads, okay?

Can you analyze the frame like this? Exact solution? (Refer Slide Time: 29:29)

Yes, that is the idea. We want to be able to handle any structure any skeletal structure of any shape subject to any loading including indirect loading. That is the objective of structural analysis.

Okay now, in slope deflection equations till now we were conveniently having only rotational unknowns and the moment equilibrium equations were M_{BA} plus M_{BC} is equal to zero kind of equations. Now, you have a translational unknown, so moment equation
is not going to work here so you need a force equilibrium equation it is called a shear equilibrium equation. Let us demonstrate that.

(Refer Slide Time: 31:11)

Let us take this example where you have a portal frame with an asymmetric load un-symmetric load, right? First identify what are your unknown displacements, theta B, theta C and you can call it just delta you can call it delta BC because every point in that beam is going to translate by the same delta, so theta B, theta C delta BC. Fixed end moments? Well your columns do not have any fixed end moments but, your beam does and you can easily calculate that, right? You can calculate the fixed end moments in the beam, right? Minus W a b squared by L squared plus W a squared b by L squared, fine?

Now, what do we do next? Slope deflection method. What do we do next? You have to write down the slope deflection equations. Chord rotations are clear here, so what will they look like? Will you try it? Write down the slope deflection equations for the three members AB, BC and CD. So how many equations to you need to write down? Six equations and you can write them mechanically. In the six equations you have to put them in terms of three unknown.

What are the three unknowns?

Theta B, theta C and delta C.

Well, instead of phi you say delta, delta by 4 is phi, right?
So, let us demonstrate for AB, do you agree with this? M_{AB} is M_{FAB}^F plus 4 EI by L of theta A is gone because theta A is zero so you are left with 2 EI by L of theta B minus 6 EI by L into phi, phi is delta by 4, is it clear? Likewise you can write for M_{BA}, M_{BA} will be M_{FBA}^F plus 4 EI by L theta B, minus 6 EI by L into phi, right?

Theta C, where is it? It is outside AB, so do not worry, right? Same thing in a continuous beam, right? You had theta B and theta C when you are dealing with this beam, C was far away, so you do not have to worry about it, is it clear?

If you will open them out it will look like continuous beam you are writing down same equations. Is there any doubt on this? In the same manner you can write for BC. In BC will there be any sway any chord rotation? No.

(Refer Slide Time: 34:28)

So, for BC it is a straightforward thing. Fixed end moment you can write down in simple 4 EI by L theta B and 2 EI by L theta C, is it clear? For M_{BA}, for M_{BC}, and for M_{CB}. Straightforward. And for M_{CD} and M_{DC}, they will look similar to M_{AB} and M_{BA}, right?

So, actually you have to just copy those equations only thing your theta B gets replaced now by theta C but, you have to put the right theta at the right place. I hope you now understand that slope deflection equations are a blind method of doing it you do not have to worry about anything. You get this.

Now, what is the next step?
Write down the…?

Equilibrium equations.

(Refer Slide Time: 35:25)

So, you need three equations, two of them are very easy. I can summarize and write it nicely in this matrix form, so you look carefully here. These are my six moments, right? Three pairs, three elements. These are my fixed end moments. Only the beam has fixed end moments the columns do not have fixed end moments. These are my coefficients related to EI theta B, EI delta C and EI delta BC which comes from either 4 EI by L or 2 EI by L or 6 EI by L squared, right? And if somehow I get the answers for EI theta B, EI theta C, EI delta then I just plug it in, I get the final answers, very simple, is it clear?

Now the big question is how do I get those three equations? Two of them are straight forward we have done it in continuous beams. There is no net moment at B, no net moment at C. You pick up the second and third rows and just add it up you will get two equations.

Where do you get third equation?

Please tell me how to write, the third equation?

The clue is you have to write it in terms of these moments. How will you write?

[((]])
No, no.

M_A equal to… M_{AB} equal to…

(()))

You tell me. This is your structure. Tell me what to do?

For BC if you find the…

Vertical reactions.

You will be able to write the reaction in terms of M_{BC} and M_{CB}.

Sir M_{AB} is equal to M_{DC}

How does that help you?

I will give a clue; no I will give a clue.

Sir M_{AB} is equal to M_{DC}, M_{AB} is equal to M_{DC}

Who told?

Horizontal force at B and C. Those moments…

Horizontal force is different from moment.

That into this will…

I will give you a clue. See you wrote M_{BA} plus M_{BC} equals zero, because there is a B common there, because theta B was the corresponding unknown rotation.

Now, you have delta BC. You have a sway degree of freedom. You have to write a force equilibrium equation, right? Not a moment equilibrium equation. Which force? What equilibrium?

The shear force in column AB.

The shear force in column AB, is it a constant shear force?

Yes.
Yes.

Because you have a column, if you take the free body of the column you have a moment only at the top and the bottom there is no intermediate load and let us say they are clockwise positive you have M_{BA} and you have M_{AB}, so your shear force is?

M_{BA} into 2

Well, they are both positives, so where is a difference?

$2 \times M_{AB}$ by the 4.

You add them M_{AB} plus M_{BA} divide by h will give you a shear force. Well to make your life easier, why don’t you look at it as horizontal reaction at A and D? What should those two reactions add up to? See easiest thing you can do. (Refer Slide Time: 34:28)

(Refer Slide Time: 38:55)

So, you do not break your head too much over it that is all you need to do. Horizontal reaction at A and D should add up to zero and for the sign convention we have assumed M_{AB} plus M_{BA} dived by 4 clockwise, where is that reaction pointing from left to right or right to left?
So for equilibrium this will point this way and this will point this way. This is what we called H_A and it will be? And this will be equal to this end wherever you cut a section the shear force is constant. What happens if you have instead of AB you have DC and CD? Well the only change is this A becomes D and you get? So this is the thinking you need to do and now you got expression of M_{AB}, M_{BA} from your slope deflection equation plug it into that equation and you got three equations.

So, George Maney discovered this way back 100 years back powerful method. Actually, the last equation you have to play a little bit with it to get the symmetry in that matrix, okay?
Actually, they do not turned out to be the way I have shown you because there is a minus sign. You have to multiply that row with minus 1 you will get the symmetry, okay? Now, what is this matrix look like? What is that matrix? Displacement method or stiffness methods not flexibility method. That matrix is a property of the structure.

What is that matrix called? Well it is related to the stiffness matrix and the beautiful part about this is (Refer Slide Time: 40:41) the vector that you get here is caused by the loads. The left side is completely a property of the structure, you change the loads only this will change this will not change and, so we will see how you can generate that stiffness matrix from first principles. I am stepping ahead in to into matrix methods but, I want us to go through that exercise.

We got this blindly by just applying equilibrium equation, right? But, with our eyes open can we generate this matrix? Let us do that then you will have a real understanding of the physics behind the mathematics. Ok.

So, can you solve these equations? And a now days you calculators which do it just by pressing some button so I will not waste time, you will get these answers okay? And then what should you do? Plug them back into the slope deflection equations you got the answers. So after you got the end moments, what should you do? You draw free body diagrams. I hope you know how to do that.
Draw the free body diagrams. Clockwise moment put clockwise, negative sign moment put anticlockwise and then everything should match all the equilibrium should be satisfied you can now find the vertical reactions in the beam and the horizontal reactions in the column and you will find there is perfect equilibrium. Everything is balanced you got the exact solution powerful method, agreed? Then you can draw the bending moment diagram it will look like that. So, you are not afraid of sway. You know how to deal with sway but, if you have multiple sway degrees of freedom you have to do it little more carefully.

(Refer Slide Time: 43:13)
Now, I want ask to go through this small exercise of generating the stiffness matrix of this frame from first principle.

Shall be give it a try okay?

You will love it, it is simple. How many degrees of freedom are there?

Three, shall we number them 1, 2, 3. Theta B is our first degree of freedom, theta C is our second degree of freedom and delta BC is our third degree of freedom. Okay, to generate the stiffness matrix of this what should I do? What is the order of the matrix?

3 by 3

3 by 3, what should I do? From first principle.

Give a unit displacement at that location.

Give a unit displacement; let us say I want to fill the first row. First column of the stiffness matrix what should I do?

First I should arrest everything.

Yes sir.

Rotate only at…

And then I should allow only

Unit displacement at 1.

One displacement at a time, which one?

First one.
So, shall we call it D_1, D_1 should be 1, D_2 should be zero. Can you sketch the deflected shape of such a frame? Do it. Sketch the deflected shape. We are trying to find the first column, so to fill this column we need to put… right? Draw a sketch, what will it look like? It should look like this, right? It should look like this.

(Refer Slide Time: 45:42)

Only a unit rotation at B, no translation, no rotation at C, right? Okay.

Can you draw the next one? Can you draw the sketch that you need to do for this one? What will it look like?
Okay, let us look at this. (Refer Slide Time: 44:40) What is the physical meaning of k_{11}?

((()))

So, when you hear of stiffness you are reminded of a spring, spring constant, right? So, it is a stiffness, so spring stiffness is force per unit deflection. Here you have two coordinates, so it is a force at the coordinate one caused by unit displacement at the coordinate J with all other coordinates arrested

(Refer Slide Time: 46:49)

So, here only theta one only D_1 is there and, so one way to do it is you remove that restraint then you deliberately give an external moment. That moment you need to apply to make the joint rotate by a unit angle is k_{11} and the reaction that develops at the other artificially fixed end at B is k_{31} and the reaction that is developed in the direction of the coordinate you identified in the translational degree of freedom is called k_{31}.

Can you calculate these quantities?

Yes sir.

Do it.

Let us draw this also the next case which is the similar. Your job now is to calculate k_{11}. What is k_{11}?
Yes?

8 EI by L.

No, wrong.

Let us do it slowly. It is going to be 4 EI by, what is L? 4 EI 4 plus?

4 in to 2 EI by

(())

6 EI by L.

These are the other notations. Agreed? This is equal to what from the other figure? \(k_{11} \) will be equal to \(k_{22} \), is it not? So we need not spend more time on that \(k_{11} \) and \(k_{22} \) will be identical. Can you find out \(k_{12} \) or \(k_{21} \)? \(k_{21} \) is how much? It is a carryover moment you get.

2 by 3 EI.

1 by 3 EI.

Which one?

2 by 3 EI.

Wait one minute; do you have a problem with this addition?

(())

1 plus 4 by 3.

(())

7 by 3.

7 by 3 that is right.

7 by 3. You are right well caught, 7 by 3 agreed, 7 by 3 okay.

This one? This is correct?
Yes sir.

Okay, it is 7 by 3 not 8 by 3 you are right, good. This is equal to k_{12}, so there itself you see the symmetry in the matrix. What is left over here? k_{31}, can you find out what k_{31}? That is a clue. That is a clue.

(Refer Slide Time: 49:48)

So, if you take that column you had how much? $4\,EI\,4$ and what do you get here? $2\,EI\,4$ by 4 and this will give you shears which are going to be equal to $6\,EI\,4$ by 4 squared and so if you take that frame in which you arrested this degree of freedom and you applied k_{11} equilibrium suggest that you will definitely get horizontal reaction here which is equal to this quantity and you do not get anything here because this does not bend, so the reaction you get here will be equal to how much?

Same

No.

Minus.

Minus, because they should add up to zero, so minus how much?

$6\,EI\,16$

$6\,EI\,16$ what works out to?
3 EI by 8.

That is it. This is the physical approach. Now it is easy, right? This will be equal to \(k_{32} \) in the second figure.

(Refer Slide Time: 51:18)

So, we have got the first two columns very easily. Last column. Can you draw the sketch?

Infinite rigidity of.

That is right.
It is like a rigid beam. This is how it is going to move. Point of contra flexure will be in the mid height of every column. So what will it look like? Can you calculate? Can you calculate k_{13} and k_{23}, it is like settlement of supports. It is a chord rotation, so what is the moment that you get? k_{13} and k_{23}.

k_{33} into L by 2.

6 EI by 4.

Sir k_{33} into L by 2.

Into 1 by 4 because your chord rotation is 1 by 4.
So remember this. If I have settlement of supports problem and this is delta. This is the shape that you get. Clockwise chord rotation will give you anticlockwise end moments. What are these moments? Well now do not talk about phi it will come to $6\,EI\,L$ squared by delta, because delta by L is phi. Do not make mistakes like that you lose everything.

Okay, so that is easy now, you got it? And there is a minus sign clockwise chord rotation will give you anticlockwise end moments, got it?
So, you got k_{13}, you got k_{23}, you got everything in this matrix except this last fellow. What is k_{33}? Will it be positive or negative?

Do you need to think to answer this? All the diagonal elements have to be positive. Why?

Displacement caused…

What does it mean? I am pushing it is to the right. Obviously it is going to deflect to the right. If I kick a football to the front, it is not going to come back, do you understand? So that is what all the diagonal elements are doing, I am pushing it in the same direction as identified positive degree of freedom, so it has to be positive. Do not break your head over it.

Okay, the off diagonal elements can be negative or positive. Diagonal elements will always be positive. How much will it be? So, what are the shears you get here? This is 6 EI by L squared, this is 6 EI by L squared. The shear will be what? Tell me the value.

3 EI delta by L cubed.

3 EI delta by L.

(Refer Slide Time: 54:13)

Where did you get three from?
3 EI delta by L.

Come on where you get 3 from?

By 2 sir.

What by 2?

Moment plus…

Take this free body, what will be this shear? What did we do here? See this plus this divided by that.

6 EI delta.

If you are an accountant, your bank balance will have reduced by one-fourth by now, if you play games like this, right? So it is not 3, it is 12, one-fourth the answer you have given is one-fourth the correct answer, is it not?

This moment plus this moment divided by that is span. (Refer Slide Time: 54;13). 12 EI. It is right in front of you. By L cubed, now that is interesting. So what is the answer? What is k_{33}? Give me the answer, final answer.

Is it 12 EI by 4 cubed?

Yes sir.

No wrong, answer is wrong.

8 EI by…

No, no, no. What a pity?

 Twice.
Twice, because there are two columns. The two columns. At the bottom there you have two reactions they should all add up to that applied force. So in to 2. Do not make mistake like this. So physical approach is for bright students who are alert, who know how to satisfy equilibrium but, it is wonderful, is it not?

Apart from that small mistake of 8 by 3 which should be 7 by 3 you get the same matrix which we got in the blind manner, right? We did it the blind way and we got the same answer.
Solution by Moment Distribution

Fixed End Moments (with $\theta_1 = 0, \Delta_1 = 0$)

$M_{A}^L = M_{B}^L = M_{C}^L = M_{D}^L = 0$ kNm

$M_{A}^R = \frac{100(0.5)(4)}{2} = -88.89$ kNm

$M_{B}^R = \frac{100(1)(4)}{2} = 444.44$ kNm

Unsymmetric loading in portal frame

Distribution Factors

$\frac{4.7}{4}, \frac{3.5}{3}, \frac{3.5}{3}, \frac{3.5}{3}, \frac{3.5}{3}, \frac{3.5}{3}, \frac{3.5}{3}$

Distribution table

<table>
<thead>
<tr>
<th></th>
<th>AB</th>
<th>BA</th>
<th>BL</th>
<th>BC</th>
<th>CB</th>
<th>CK</th>
<th>CD</th>
<th>DC</th>
<th>DJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.O.F.</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>F.E.M.</td>
<td>-100.0</td>
<td>-100.0</td>
<td>-14.03</td>
<td>112.26</td>
<td>-45.00</td>
<td>-45.00</td>
<td>45.00</td>
<td>-15.00</td>
<td>-15.00</td>
</tr>
<tr>
<td>Bal 1</td>
<td>-14.03</td>
<td>+14.03</td>
<td>112.26</td>
<td>-45.00</td>
<td>-45.00</td>
<td>45.00</td>
<td>-15.00</td>
<td>-15.00</td>
<td>112.86</td>
</tr>
<tr>
<td>CoM 1</td>
<td>-14.03</td>
<td>+14.03</td>
<td>112.26</td>
<td>-45.00</td>
<td>-45.00</td>
<td>45.00</td>
<td>-15.00</td>
<td>-15.00</td>
<td>112.86</td>
</tr>
<tr>
<td>Bal 2</td>
<td>0.73</td>
<td>+0.73</td>
<td>+5.81</td>
<td>+0.97</td>
<td>+2.61</td>
<td>-2.61</td>
<td>+2.61</td>
<td>+0.97</td>
<td>+0.73</td>
</tr>
<tr>
<td>CoM 2</td>
<td>0.73</td>
<td>+0.73</td>
<td>+5.81</td>
<td>+0.97</td>
<td>+2.61</td>
<td>-2.61</td>
<td>+2.61</td>
<td>+0.97</td>
<td>+0.73</td>
</tr>
<tr>
<td>Bal 3</td>
<td>0.35</td>
<td>+0.35</td>
<td>+2.02</td>
<td>+0.34</td>
<td>+0.26</td>
<td>+0.34</td>
<td>+0.26</td>
<td>+0.34</td>
<td>+0.35</td>
</tr>
<tr>
<td>CoM 3</td>
<td>0.35</td>
<td>+0.35</td>
<td>+2.02</td>
<td>+0.34</td>
<td>+0.26</td>
<td>+0.34</td>
<td>+0.26</td>
<td>+0.34</td>
<td>+0.35</td>
</tr>
<tr>
<td>Bal 4</td>
<td>-0.03</td>
<td>+0.03</td>
<td>+0.02</td>
<td>+0.09</td>
<td>+0.09</td>
<td>+0.09</td>
<td>+0.09</td>
<td>+0.09</td>
<td>+0.03</td>
</tr>
<tr>
<td>CoM 4</td>
<td>-0.03</td>
<td>+0.03</td>
<td>+0.02</td>
<td>+0.09</td>
<td>+0.09</td>
<td>+0.09</td>
<td>+0.09</td>
<td>+0.09</td>
<td>+0.03</td>
</tr>
<tr>
<td>Bal 5</td>
<td>-115.04</td>
<td>-81.96</td>
<td>+120.29</td>
<td>-25.41</td>
<td>-54.58</td>
<td>+62.70</td>
<td>-8.12</td>
<td>-21.75</td>
<td>+21.75</td>
</tr>
<tr>
<td>CoM 5</td>
<td>-115.04</td>
<td>-81.96</td>
<td>+120.29</td>
<td>-25.41</td>
<td>-54.58</td>
<td>+62.70</td>
<td>-8.12</td>
<td>-21.75</td>
<td>+21.75</td>
</tr>
</tbody>
</table>
As I said do not attempt this by moment distribution, but if by chance you did it, then you get the same fixed end moments, you get the distribution factors, you draw the table, you get some values but, the problem is you will not satisfy equilibrium and you can check it out. You will find that the horizontal reactions do not match. There is the balance and you need to analyze the frame for that lateral load. So, let us not do moment distribution method when there is sway. I will conclude by dealing with one last problem of pure sway.

(Refer Slide Time: 56:51)
You have this frame subject to pure sway, okay? How do you solve this problem? Are there any fixed end moments? No fixed end moments. Deflected shape will look like that. Remember we did an approximate analysis when we did portal method cantilever method. We do not do anything approximate now. We do exact. This is exact solution. So same three unknown displacements. I will not waste time writing down slope deflection equation because they are the same as in the previous problem with one additional advantage, what is the advantage? No fixed end moments, right? There is pure sway that is going to the node. It is not going in between any member. Then what about your equilibrium equations? Same except, in that last equation when you put sigma F X equal to zero, you have to add the lateral load which was not there in the earlier problem and do it properly. Put plus 50 on the left hand side of the equation and not on the right hand side because you will get totally wrong results otherwise, clear?

(Refer Slide Time: 58:02)
Then you get the same stiffness. In fact if you do stiffness method, you can use this. You do not have to do slope deflection method F_1 is zero, F_2 is zero, F_3 is 50, right? So you can do it this way also.

(Refer Slide Time: 58:28)

Now you see, this is the stiffness method which we are going to do soon. Solve it, plug it into the back into the slope deflections equations you get this answer which we got.

Now look at this problem. I am going to raise a question and will stop this class. There is something nice about this bending moment diagram. What do you call such figure? It is
not symmetric, it is anti-symmetric. So that gives you a clue. It is anti-symmetric and the moment at the middle of the beam is zero, so maybe we could have taken an advantage of this anti-symmetry.

(Refer Slide Time: 59:24)

How do it take advantage of it? You can do this. Symmetry plus anti-symmetry and when you cut it in the middle because that is why your moment is zero you can replace your original structure with this structure. This structure does not have any bending. Pure axial compression in this member, only this will bend and now it is left to you. You can either choose a left one or the right one, so your problem has become much less complicated. How many unknowns do you have there? Theta B? Why? You can ignore sway, because it is a cantilever action we have done a problem earlier like this, so life is easy you have to just take out that. theta B is your unknown, right?

(()))

We will look at this in the next class but, this is a beautiful shortcut method. This is what we will explore in the next class and this is what have you got in your assignment, the last problem but, you got two floors.

Thank you.
Keywords: Basic Structural Analysis, Kinematically Indeterminate Structure, Displacement Methods, Slope Deflection Method, Modified Slope Deflection Method, Moment Distribution Method, Sway Frames