Tuning LC oscillator

\[C_{V_{\text{varactor}}} = \frac{g_0}{(1 + \frac{V_R}{\phi})^m} \]

\[m = 0.4 \text{ to } 0.5 \]
Mathematical Model of VCO

\[\phi = \frac{d\phi}{dt} \]

\[\omega t = \phi \]
\[\frac{d\phi}{dt} = \omega \]
\[\phi = \int \omega \, dt + \phi_0 \]

In a VCO

\[\omega_{\text{out}} = \omega_0 + K_{\text{VCO}} V_{\text{cont}} \]

We have oscillator output

\[V_{\text{out}}(t) = V_m \cos \phi t = V_m \cos \int \omega_{\text{out}} \, dt + \phi_0 \]
\[V_{out}(t) = V_m \cos \left\{ \omega t + KV_{eo} \int V_{cnt} \, dt + \phi_0 \right\} \]

Assume \(\phi_0 = 0 \)

If \(V_{cnt} \) is constant:
\[V_{out}(t) = V_m \cos \left\{ \omega t + KV_{eo} \int V_m \cos \omega_m t \, dt \right\} \]

Then:
\[V_{out}(t) = V_m \cos \left\{ \omega t + KV_{eo} \frac{V_m}{\omega_m} \sin \omega_m t \right\} \]

\[= V_m \cos \omega t - \frac{KV_{eo} V_m}{2\omega_m} \left[\cos (\omega_0-\omega_m)t - \cos (\omega_0+\omega_m)t \right] \]

Sideband:
\[\omega_0 - \omega_m \quad \omega_0 \quad \omega_0 + \omega_m \]
Phase Lock Loop

PLL was invented in 1930

1. Locking VCO to a Frequency
2. Frequency Synthesizers
3. Used in Mobile phones, TV, Receivers, Pager, Telephony

- Digital PLL (b) Sinusoidal PLL 1965-1970
- Optical PLL 1965
Definition: A PLL is a Feedback system
That
Compares the Output Phase
With
The Input Phase.
Comparison is performed
By
PHASE COMPARATOR
Analog Designers find issues related to:

- Jitter
- Phase Noise

very difficult to handle at high frequencies, which are now used in most Electronic & Communication Systems. Even Digital Systems on Board (PCB) also get critically affected due to two parameters or characteristics as above.
Example: 100 MHz Pulse waveform (50% Duty Cycle), show period of 10 ps and alternating at 5 ps at every edge. But this is only an ideal case. Transitions normally do not occur at 5 ps edge and that creates what we term as Jitter.

\[\text{Early Transition} \quad \text{Late Transitions} \]

- Ideal
- Non-Ideal
Jitter:

i. Deterministic
 - Cross talk
 - EMI radiation on Signal Path
 - Noise from Surroundings
 - Switching - Power Supply Droop
 - Ground Bounce

ii. Random:
 - Temperature, Process Variations,
 Interface States
 - Random Jitter is Gaussian in nature
 - Multiple random jitter sources add to RMS Jitter,
Phase Noise:
Variation in signal timings can also be represented in Frequency Domain and resultant Noise distribution is measured as Phase-Noise (PN).

\[
P_{\text{osc}}(f) = \begin{cases}
\text{Power} & \text{for } f \approx f_0 \\
\text{1 Hz Bandwidth} & \text{for } f = f_0 + f_m
\end{cases}
\]

If PN is 0, then all oscillator Power goes to \(f_0\) but PN spread some power to adjacent frequencies, which results in Sidebands.
Phase Noise = \frac{\text{Power in 1 Hz Bandwidth at Offset freq}}{\text{Total Power of the Carrier}}
= \text{dBc/Hz}

[Diagram showing power versus frequency with labels: \(1/f\), \(1/f^2\), \(1/f^3\) noise, white frequency, flicker noise, \(\sqrt{\text{Th. Noise}}\).]
Terminology

Frequency Locked
Phase error < permissible phase error (e.g. 5% of the output freq.)

Pull-in range (Capture Range)
The frequency range over which a loop can acquire lock.

\[\omega_{in} = (\omega_{FR} - \Delta(\theta)) \]

\[\omega_{out} = (\omega_{FR}) \]
Terminology

Jitter:

- Deterministic.
- Random - specified in rms value or peak to peak.

Cycle to cycle jitter.

$$T + \Delta T_1 \quad T + \Delta T_2$$

Accumulated jitter (cycle jitter).

Duty cycle distortion jitter.
Basic IC PLL

Phase Detector

Definition of Phase detector

XOR gate as phase detector
Simple PLL

Phase detector output for different input skews
A Typical PLL in CMOS

- In (LC) Oscillator