Module 4 : Propagation Delays in MOS
Lecture 24 : Methods for Reduction of Delays in Multistage Logic Networks

Objectives

In this lecture you will learn the following
- Effect of Using Wrong Number of Stages
- Dynamic Latch
- Carry Propagation Gate
- Dynamic Mular C-element
- Fork

24.1 Using Wrong No. of Stages

Let us assume that the number of stages is wrong by a factor $s$, i.e. the number of stages is $s\hat{N}$. Where $\hat{N}$ is the best number to use. The delay can be expressed as a function of $N$ (assuming parasitic delay of each stage is same as $p$) as:

$$D(N) = N(F^{1/N} + p)$$

Let $r$ be the ratio of the delay when using $s\hat{N}$ stages to the delay when using best number of stages, $\hat{N}$. So,

$$r = \frac{D(s\hat{N})}{D(\hat{N})}$$

Since $\hat{N}$ is the best number we know that $F = \hat{p}^{\hat{N}}$. Solving for $r$ we obtain

$$r = \frac{1}{s(\hat{p}^{1} + p)}$$

This relationship is plotted in the figure for $p = 1$ and $p = 3.59$. 
A designer often faces the problem of deciding whether it would be beneficial to change the number of stages in an existing circuit. This can easily be done by calculating the stage effort. If the effort is between 2 and 8, the design is within 35% of best delay. If the effort is between 2.4 and 6, the design is within 15% of best delay. Therefore, there is little benefit in modifying a circuit unless the stage effort is grossly high or low.

**24.2 Dynamic Latch**

Fig 24.21 shows a dynamic latch: when the clock signal $\Phi$ is HIGH, and its complement $\bar{\Phi}$ is LOW, the gate output $q$ is set to the complement of the input $d$. The total logical effort of this gate is 4; the logical effort per input for $d$ is 2, and the logical effort of the $\Phi^*$ bundle is also 2. (Note $\gamma$ is 2)
24.3 Carry Propagation Gate

Fig 24.31 shows one stage of a ripple-carry chain in an adder. The stage accepts carry $C_{in}$ and delivers a carry out in inverted form on $\overline{C_{out}}$. The inputs $g$ and $\overline{k}$ come from the two bits to be summed at this stage. The signal $g$ is HIGH if this stage generates a new carry, forcing $\overline{C_{out}}=0$. Similarly, $\overline{k}$ is LOW if this stage kills incoming carries, forcing $\overline{C_{out}}=1$

The total logical effort of this gate is $\frac{(5+5)}{(1+1)}=5$. The logical effort per input for $C_{in}$ is 2; for the $g$ input it is $\frac{(1+2)}{(1+1)}$; and for the input it is $\frac{(2+1)}{(1+1)}$.
24.4 Dynamic Muller C-element

Fig 24.41 shows an inverting dynamic Muller C-element with two inputs. Although this gate is rarely seen in designs for synchronous systems, it is a staple of asynchronous system design. The behavior of the gate is as follows: When both inputs are HIGH, the output goes LOW; when both inputs go LOW, the output goes HIGH. In other conditions, the output retains its previous value - the C-element thus retains state. The total logical effort of this gate is 4, divided between the two inputs.

Fig 24.41: A two input inverting dynamic Muller C-element

24.5 Fork

If we try to use a signal and an inverter for the complimentary signal then we get unequal delay between two signals. So we use N-stages and adjust the sizing such that we get two complementary signals with equal delay.

Fig 24.51 shows a 2-1 fork and a 3-2 fork, both of which produce the same logic signals. Fig 24.52 shows a general fork.

Fig 24.51: A 2-1 fork and 3-2 fork
The design of a fork starts out with a known load on the output legs and known total input capacitance. As shown in Fig 24.52, we shall call the two output capacitances $C_a$ and $C_b$. The combined total load driven we will call $C_{out} = C_a + C_b$. The total input capacitance for the fork we shall call $C_{in} = C_{ina} + C_{inb}$, and can thereby describe the electrical effort for the fork as a whole to be $H = \frac{C_{out}}{C_{in}}$. This electrical effort of the fork may differ from the electrical efforts of the individual legs, $\frac{C_a}{C_{ina}}$ and $\frac{C_b}{C_{inb}}$.

The input current to an optimized fork may divide unequally to drive its two legs. Even if the load capacitances on the two legs of the fork are equal, it is not in general true that the input capacitances to the two legs of the fork are equal. Because the legs have different number of amplifiers but must operate with the same delay, their electrical efforts may differ. The leg that can support the larger electrical effort, usually the leg with more amplifiers, will require less input current than the other leg, and can therefore have a smaller input capacitance. If we call the electrical efforts of the two legs $H_a$ and $H_b$, using the notation of Fig 24.52, then $H_a = \frac{C_a}{C_{ina}}$ and $H_b = \frac{C_b}{C_{inb}}$. Even if $C_a = C_b$, $H_a$ may not equal $H_b$ and $C_{ina}$ and $C_{inb}$ may also differ.

The design of a fork is a balancing act. Either leg of the fork can be made faster by reducing its electrical effort, which is done by giving it wider transistors for its amplifier. Doing so, however, takes input current away from the other leg of the fork and will inevitably make it slower. A fixed value of $C_{in}$ provides, in effect, only a certain total width of transistor material to distribute between the first stages of the two legs; putting wider transistors in one leg requires putting narrower transistors in the other leg. The task of designing a minimum delay fork is really the task of allocating the available transistor width set by $C_{in}$ to the input stages of the two legs.
Recap

In this lecture you have learnt the following
- Effect of Using Wrong Number of Stages
- Dynamic Latch
- Carry Propagation Gate
- Dynamic Mular C-element
- Fork

Congratulations, you have finished Lecture 24.