Module I: Electromagnetic waves
Lectures 10-11: Multipole radiation

Amol Dighe
TIFR, Mumbai
Outline

1. Multipole expansion
2. Electric dipole radiation
3. Magnetic dipole and electric quadrupole radiation
Coming up...

1. Multipole expansion
2. Electric dipole radiation
3. Magnetic dipole and electric quadrupole radiation
Vector potential \vec{A}_0 for monochromatic sources

- We are interested in calculating the radiative components of EM fields and related quantities (like radiated power) for a charge / current distribution that is oscillating with a frequency ω. The results for a general time dependence can be obtained by integrating over all frequencies (inverse Fourier transform).

- We have already seen that it is enough to know about the current distribution (we are interested only in radiative parts), since the charge distribution is related to it by continuity. In such a case, with $\vec{J}(\vec{x}', t) = \vec{J}_0(\vec{x}') e^{-i\omega t}$, we get

$$\vec{A}(\vec{x}, t) = \mu_0 \frac{1}{4\pi} e^{-i\omega t} \int \vec{J}_0(\vec{x}') \frac{e^{ik|\vec{x} - \vec{x}'|}}{|\vec{x} - \vec{x}'|} d^3x'$$

(1)

- Given $\vec{A}(\vec{x}, t) = \vec{A}_0(\vec{x}) e^{-i\omega t}$, the rest of the quantities can be easily calculated in terms of it. We shall omit the “rad” label in this lecture, it is assumed to be everywhere except when specified.
\vec{B}_{rad} and \vec{E}_{rad} for monochromatic sources

- At large distances,

$$\vec{A}(\vec{x}, t) = \frac{\mu_0}{4\pi} e^{i(k|\vec{x}| - \omega t)} \int \vec{J}_0(\vec{x}') \frac{e^{-i\vec{k} \cdot \vec{x}'}}{|\vec{x} - \vec{x}'|} d^3x'$$ \hspace{1cm} (2)

- Taking $\vec{x} = r \hat{r}$ and neglecting terms that go as $(1/r^2)$, the radiative part of the magnetic field is

$$\vec{B}(\vec{x}, t) = \nabla \times \vec{A}(\vec{x}, t) = ik\hat{r} \times \vec{A}_0(\vec{x}) e^{-i\omega t}$$ \hspace{1cm} (3)

- The radiative part of the electric field can be obtained in this monochromatic case by using $(1/c^2) \partial \vec{E}(\vec{x}, t)/\partial t = \nabla \times \vec{B}(\vec{x}, t)$ (there is no current at large $|\vec{x}|$):

$$\vec{E}(\vec{x}, t) = \frac{c^2}{(-i\omega)} \nabla \times \vec{B}(\vec{x}, t) = c\vec{B}_0(\vec{x}) \times \hat{r} e^{-i\omega t}$$ \hspace{1cm} (4)

- Thus, $\vec{E}(\vec{x}, t)$ and $\vec{B}(\vec{x}, t)$ fields are orthogonal to \hat{r}, orthogonal to each other, and their magnitudes differ simply by a factor of c.
For wavelength large compared to the source size, $|\vec{k} \cdot \vec{x}'| \ll 1$, and we can expand the $e^{-i\vec{k} \cdot \vec{x}'}$ term (note that $\vec{k} = k\hat{r}$):

$$\vec{A}_0(\vec{x}) = \frac{\mu_0}{4\pi} e^{ikr} \sum \frac{(-ik)^n}{n!} \int \vec{J}_0(\vec{x}') (\hat{r} \cdot \vec{x}')^n \frac{d^3x'}{|\vec{x} - \vec{x}'|} (5)$$

If we approximate $|\vec{x} - \vec{x}'| \approx r$, i.e. neglect the corrections proportional to (d/r) where d is the source size, we get a simpler form

$$\vec{A}_0(\vec{x}) = \frac{\mu_0}{4\pi} \frac{e^{ikr}}{r} \sum \frac{(-ik)^n}{n!} \int \vec{J}_0(\vec{x}') (\hat{r} \cdot \vec{x}')^n d^3x' (6)$$

This is the approximate form of the “multipole expansion”, and works for a few lower-order multipoles. Note that this approximation is fine as long as the expansion parameter in $|\vec{x} - \vec{x}'|$ is much smaller than the expansion parameter in $e^{ik|\vec{x} - \vec{x}'|}$, i.e. $d/r \ll kd$, or $r \gg \lambda$.

The complete expression for multipole expansion, valid even for intermediate distances, is given on the next page.
Radiation potential at intermediate distances

- An expansion for $e^{ik|\vec{x}-\vec{x}'|}/|\vec{x} - \vec{x}'|$ exists in terms of Legendre polynomials, spherical Bessel functions and Hankel functions, which we give here without proof:

$$e^{ik|\vec{x}-\vec{x}'|}/|\vec{x} - \vec{x}'| = ik \sum (2n + 1) P_n(\cos \theta') j_n(k|\vec{x}'|) h_n(kr)$$

(7)

- At $k|\vec{x}'| << 1$, we have

$$j_n(k|\vec{x}'|) = \frac{2^n n!}{(2n + 1)!} (k|\vec{x}'|)^n$$

(8)

- For $kr >> 1$, we have

$$h_n(kr) = (-i)^{n+1} \frac{e^{ikr}}{kr}$$

(9)

- Using these two, the long-distance approximation gives

$$e^{ik|\vec{x}-\vec{x}'|}/|\vec{x} - \vec{x}'| = (-ik)^n \frac{e^{ikr}}{r} \sum \frac{2^n n!}{(2n)!} |\vec{x}'|^n P_n(\cos \theta')$$

(10)

which matches our expansion to the two leading orders (check).
Coming up...

1. Multipole expansion

2. Electric dipole radiation

3. Magnetic dipole and electric quadrupole radiation
The \(n = 0 \) term in the multipole expansion

- The leading \((n = 0)\) term in the multipole expansion is

\[
\bar{A}^{(0)} = \frac{\mu_0}{4\pi} \frac{e^{ikr}}{r} \int \bar{J}_0(\vec{x}') d^3x'
\]

(11)

- The integral may be written in a more familiar form through the steps

\[
\int \bar{J}_0(\vec{x}') d^3x' = -\int \vec{x}' [\nabla' \cdot \bar{J}_0(\vec{x}')] d^3x'
\]

(12)

and using the continuity equation \(\nabla' \cdot \bar{J}_0(\vec{x}') = -i\omega \rho_0(\vec{x}') \):

\[
\int \bar{J}_0(\vec{x}') d^3x' = -i\omega \int \vec{x}' \rho_0(\vec{x}') d^3\vec{x}' = -i\omega \vec{p}
\]

(13)

where \(\vec{p} \) is the electric dipole moment.

- The \(n = 0 \) term thus represents the electric dipole radiation:

\[
A^{ED}_0(\vec{x}) = \frac{\mu_0}{4\pi} \frac{e^{ikr}}{r} (-i\omega)\vec{p}
\]

(14)
Electric dipole: \vec{B}, \vec{E} and radiated power

- The magnetic and electric fields can immediately be written as

$$\vec{B}_0^{ED}(\vec{x}) = ik\hat{r} \times \vec{A}_0^{ED}(\vec{x}) = \frac{\mu_0}{4\pi} \frac{e^{ikr}}{r} (ck^2)\hat{r} \times \vec{p} \quad (15)$$

$$\vec{E}_0^{ED}(\vec{x}) = c\vec{B}_0^{ED}(\vec{x}) \times \hat{r} = \frac{\mu_0}{4\pi} \frac{e^{ikr}}{r} (c^2k^2)(\hat{r} \times \vec{p}) \times \hat{r} \quad (16)$$

- The Poynting vector $\vec{N}(\vec{x}, t) = \vec{E}(\vec{x}, t) \times \vec{H}(\vec{x}, t)$ is normal to both, $(\hat{r} \times \vec{p})$ and $[(\hat{r} \times \vec{p}) \times \hat{r}]$, i.e. along \hat{r}, as expected.

$$\langle \vec{N}(\vec{x}) \rangle = \frac{1}{2} \frac{\mu_0}{(4\pi)^2} \frac{1}{r^2} k^4 c^3 |\hat{r} \times \vec{p}|^2 \hat{r} \quad (17)$$

$$= \frac{\mu_0}{32\pi^2 r^2} k^4 c^3 |\vec{p}|^2 \sin^2 \theta \hat{r} \quad (18)$$

- The average power radiated per solid angle is then

$$\frac{dP}{d\Omega} = \langle \vec{N} \rangle \cdot r^2 \hat{r} = \frac{\mu_0}{32\pi^2} k^4 c^3 |\vec{p}|^2 \sin^2 \theta$$

$$\quad (19)$$
Electric dipole radiation: salient features

- The radiated power is proportional to the fourth power of frequency. This results in the blue colour of the sky: the sunlight induces dipoles in the air molecules, which then radiate, giving out more light at high frequencies, i.e. near the blue end of the spectrum.

- The angular dependance is $\sin^2 \theta$, i.e. there is no radiation in the direction of the dipole, most of the radiation is in the equatorial plane.

- At large wavelengths ($\lambda \gg L$), antennas (discussed in the last lecture) also emit dipole radiation.
Coming up...

1. Multipole expansion
2. Electric dipole radiation
3. Magnetic dipole and electric quadrupole radiation
n = 1 term in the multipole expansion

- The \(n = 1 \) term in the expansion is

\[
A_{0}^{(1)}(\mathbf{x}) = \frac{\mu_0 e^{ikr}}{4\pi r} (-ik) \int \mathbf{J}_0(\mathbf{x}') (\hat{r} \cdot \mathbf{x}') d^3 x'
\]
 (20)

- Using \((\mathbf{x}' \times \mathbf{J}) \times \hat{r} = (\hat{r} \cdot \mathbf{x}') \mathbf{J} - (\hat{r} \cdot \mathbf{J}) \mathbf{x}'\), the integral may be separated into two parts:

\[
\int \mathbf{J}_0(\mathbf{x}') (\hat{r} \cdot \mathbf{x}') d^3 x' = I_{MD} + I_{EQ}
\]
 (21)

where

\[
I_{MD} = \int \frac{1}{2} [\mathbf{x}' \times \mathbf{J}_0(\mathbf{x}')] \times \hat{r} d^3 x'
\]
 (22)

\[
I_{EQ} = \int \frac{1}{2} [(\hat{r} \cdot \mathbf{x}') \mathbf{J}_0(\mathbf{x}') + (\hat{r} \cdot \mathbf{J}_0(\mathbf{x}')) \mathbf{x}'] d^3 x'
\]
 (23)

- These two terms correspond to the magnetic dipole and the electric quadrupole components, respectively, as we shall see.
Magnetic dipole radiation

Since the magnetic dipole moment is defined as

\[\vec{m} = \int \frac{1}{2} [\vec{x}' \times \vec{J}_0(\vec{x}')] d^3x' \]

(24)

the component of \(\vec{A}_0 \) corresponding to \(I_{MD} \) becomes

\[\vec{A}^{MD}_0(\vec{x}) = \frac{\mu_0 e^{ikr}}{4\pi r} (-ik)(\vec{m} \times \hat{r}) \]

(25)

This immediately leads to

\[\vec{B}^{MD}_0(\vec{x}) = (ik)\hat{r} \times \vec{A}^{MD}_0(\vec{x}) = \frac{\mu_0 e^{ikr}}{4\pi r} k^2 \hat{r} \times (\vec{m} \times \hat{r}) \]

(26)

\[\vec{E}^{MD}_0(\vec{x}) = c\vec{B}^{MD}_0(\vec{x}) \times \hat{r} = \frac{\mu_0 e^{ikr}}{4\pi r} k^2 [\hat{r} \times (\vec{m} \times \hat{r})] \times \hat{r} \]

(27)

And the average power radiated per unit area is

\[\langle \vec{N}(\vec{x}) \rangle = \frac{1}{2} \frac{\mu_0}{(4\pi)^2} \frac{1}{r^2} k^4 c^3 |\vec{m}|^2 \sin^2 \theta \hat{r} \]

(28)

where \(\theta \) is the angle between \(\vec{m} \) and \(\hat{r} \).
Electric quadrupole radiation

- The remaining component of $A_0^{(1)}$ is the electric quadrupole part (as will be clear soon):

$$A_0^{EQ} = \frac{\mu_0}{4\pi} \frac{e^{ikr}}{r} \left(-ik\right) \int \frac{1}{2} \left[(\hat{r} \cdot \vec{x}') J_0(\vec{x}') + (\hat{r} \cdot \vec{J}_0(\vec{x}')) \vec{x}' \right] d^3x$$

$$= \frac{\mu_0}{4\pi} \frac{e^{ikr} \left(-k^2 c \right)}{r} \frac{1}{2} \int \vec{x}'(\hat{r} \cdot \vec{x}') \rho_0(\vec{x}') d^3x'$$

$$= \frac{\mu_0}{4\pi} \frac{e^{ikr} \left(-k^2 c \right)}{r} \frac{1}{3} \left[\vec{Q}(\hat{r}) + \hat{r} \int r'^2 \rho_0(\vec{x}') d^3x' \right]$$

- Here, $\vec{Q}(\hat{r})$ is the component of the electric quadrupole moment along \hat{r}, i.e.

$$\vec{Q}_\alpha = \sum \ Q_{\alpha \beta} \hat{r}_\beta ,$$

with

$$Q_{\alpha \beta} \equiv \int \left(3x'_\alpha x'_\beta - r'^2 \delta_{\alpha \beta} \right) \rho_0(\vec{x}') d^3x' ,$$

the electric quadrupole moment.
Electric quadrupole: \vec{B}, \vec{E} and power radiated

Now we can calculate $\vec{B}_0(\vec{x})$ and $\vec{E}_0(\vec{x})$:

$$B_{0EQ}(\vec{x}) = \mu_0 \frac{e^{ikr}}{4\pi} \frac{-ik^3c}{r} \hat{r} \times \hat{Q}(\hat{r})$$
$$E_{0EQ}(\vec{x}) = \mu_0 \frac{e^{ikr}}{4\pi} \frac{-ik^3c^2}{r} (\hat{r} \times \hat{Q}(\hat{r})) \times \hat{r}$$

The average Poynting vector is

$$\langle \vec{N}(\vec{x}) \rangle = \frac{1}{2} \frac{\mu_0}{(4\pi^2)^2} \frac{1}{r^2} \frac{k^6c^3}{36} |\hat{r} \times \hat{Q}(\hat{r})|^2 \hat{r}$$

The average power radiated per unit solid angle is

$$\frac{dP}{d\Omega} = \frac{\mu_0}{4\pi} \frac{k^6c^3}{288} |\hat{r} \times \hat{Q}(\hat{r})|^2$$
Comment on Electric quadrupole radiation

- If the charge distribution is azimuthally symmetric, and has a reflection symmetry about z axis (spheroidal distribution is a special case of this), then

\[Q_{xy} = Q_{yz} = Q_{xz} = 0, \quad Q_{xx} = Q_{yy} = Q_0, \quad Q_{zz} = -2Q_0 \] (38)

In such a case, it can be shown that the power radiated is

\[\frac{dP}{d\Omega} = \frac{\mu_0 k^6 c^3}{32} |Q_0|^2 \sin^2 \theta \cos^2 \theta \] (39)

where \(\theta \) is the angle between \(\hat{r} \) and \(\vec{Q}(\hat{r}) \).

- The gravitational radiation has a similar form to the electric quadrupole radiation, except one has to deal with time-dependent mass distribution rather than time-dependent charge distribution.
Recap of topics covered in this lecture

- Calculating radiative components of \vec{B} and \vec{E} from \vec{A}
- Multipole expansion when $|\vec{x}'| < \lambda < |\vec{x}|$
- Electric dipole radiation as the leading term in multipole expansion
- Separating magnetic dipole moment and electric quadrupole moment contributions from the subleading term
- \vec{E}, \vec{B}, Poynting vector, average rate of radiated power, and the angular distribution of radiated power for first few multipoles