Modules / Lectures


New Assignments
Module NameDownload
Week 1 Assignment SolutionsWeek 1 Assignment Solutions
Week 10 Assignment SolutionsWeek 10 Assignment Solutions
Week 11 Assignment SolutionsWeek 11 Assignment Solutions
Week 12 Assignment SolutionsWeek 12 Assignment Solutions
Week 2 Assignment SolutionsWeek 2 Assignment Solutions
Week 3 Assignment SolutionsWeek 3 Assignment Solutions
Week 4 Assignment SolutionsWeek 4 Assignment Solutions
Week 5 Assignment SolutionsWeek 5 Assignment Solutions
Week 6 Assignment SolutionsWeek 6 Assignment Solutions
Week 7 Assignment SolutionsWeek 7 Assignment Solutions
Week 8 Assignment SolutionsWeek 8 Assignment Solutions
Week 9 Assignment SolutionsWeek 9 Assignment Solutions

Sl.No Chapter Name English
1Lecture 1 : Set, Group, Field, RingPDF unavailable
2Lecture 2 : Vector SpacePDF unavailable
3Lecture 3 : Span, Linear combination of vectorsPDF unavailable
4Lecture 4 : Linearly dependent and independent vector, BasisPDF unavailable
5Lecture 5 : Dual SpacePDF unavailable
6Lecture 6 : Inner ProductPDF unavailable
7Lecture 7 : Schwarz InequalityPDF unavailable
8Lecture 8 : Inner product space, Gram- Schmidt Ortho-normalizationPDF unavailable
9Lecture 9 : Projection operatorPDF unavailable
10Lecture 10 : Transformation of BasisPDF unavailable
11Lecture 11 : Transformation of Basis (Continue)PDF unavailable
12Lecture 12 : Unitary transformation, Similarity TransformationPDF unavailable
13Lecture 13 : Eigen Value, Eigen VectorsPDF unavailable
14Lecture 14 : Normal MatrixPDF unavailable
15Lecture 15 : Diagonalization of a MatrixPDF unavailable
16Lecture 16: Hermitian MatrixPDF unavailable
17Lecture 17 : Rank of a MatrixPDF unavailable
18Lecture 18 : Cayley - Hamilton Theorem, Function spacePDF unavailable
19Lecture 19: Metric Space, Linearly dependent –independent functionsPDF unavailable
20Lecture 20 : Linearly dependent –independent functions (Cont), Inner Product of functionsPDF unavailable
21Lecture 21: Orthogonal functionsPDF unavailable
22Lecture 22: Delta Function, CompletenessPDF unavailable
23Lecture 23: FourierPDF unavailable
24Lecture 24: Fourier Series (Contd.)PDF unavailable
25Lecture 25: Parseval Theorem, Fourier TransformPDF unavailable
26Lecture 26: Parseval Relation, Convolution TheoremPDF unavailable
27Lecture 27: Polynomial space, Legendre PolynomialPDF unavailable
28Lecture 28: Monomial Basis, Factorial Basis, Legendre BasisPDF unavailable
29Lecture 29: Complex NumbersPDF unavailable
30Lecture 30: Geometrical interpretation of complex numbersPDF unavailable
31Lecture 31 : de Moivre’s TheoremPDF unavailable
32Lecture 32 : Roots of a complex numberPDF unavailable
33Lecture 33 : Set of complex no, Stereographic projectionPDF unavailable
34Lecture 34 : Complex Function, Concept of LimitPDF unavailable
35Lecture 35 : Derivative of Complex Function, Cauchy-Riemann EquationPDF unavailable
36Lecture 36 : Analytic FunctionPDF unavailable
37Lecture 37 : Harmonic ConjugatePDF unavailable
38Lecture 38 : Polar form of Cauchy-Riemann EquationPDF unavailable
39Lecture 39 : Multi-valued function and BranchesPDF unavailable
40Lecture 40 : Complex Line Integration, Contour , RegionsPDF unavailable
41Lecture 41: Complex Line Integration(Cont.)PDF unavailable
42Lecture 42: Cauchy-Goursat TheoremPDF unavailable
43Lecture 43 : Application of Cauchy-Goursat TheoremPDF unavailable
44Lecture 44: Cauchy’s Integral FormulaPDF unavailable
45Lecture 45: Cauchy’s Integral Formula (Contd.) PDF unavailable
46Lecture 46:Series and SequencePDF unavailable
47Lecture 47:Series and Sequence (Contd.)PDF unavailable
48Lecture 48:Circle and radius of convergencePDF unavailable
49Lecture 49: Taylor SeriesPDF unavailable
50Lecture 50 Classification of singularityPDF unavailable
51Lecture 51: Laurent Series, SingularityPDF unavailable
52Lecture 52: Laurent series expansionPDF unavailable
53Lecture 53: Laurent series expansion (Cont), Concept of ResiduePDF unavailable
54Lecture 54: Classification of ResiduePDF unavailable
55Lecture 55: Calculation of Residue for quotient fromPDF unavailable
56Lecture 56 : Cauchy’s Residue TheoremPDF unavailable
57Lecture 57 : Cauchy’s Residue Theorem (Cont)PDF unavailable
58Lecture 58 : Real Integration using Cauchy’s Residue TheoremPDF unavailable
59Lecture 59 : Real Integration using Cauchy’s Residue Theorem (Cont)PDF unavailable
60Lecture 60 : Real Integration using Cauchy’s Residue Theorem (Cont)PDF unavailable


Sl.No Language Book link
1EnglishNot Available
2BengaliNot Available
3GujaratiNot Available
4HindiNot Available
5KannadaNot Available
6MalayalamNot Available
7MarathiNot Available
8TamilNot Available
9TeluguNot Available