Module NameDownload


Sl.No Chapter Name MP4 Download Transcript Download
1Lec 1: Error analysis & estimates, significant digits, convergenceDownloadPDF unavailable
2Lec 2: Roots of Non-linear equations, Bisection methodDownloadPDF unavailable
3Lec 3: Newton Raphson method, Secant methodDownloadPDF unavailable
4Lec 4: Newton Raphson Method DownloadPDF unavailable
5lec 5: Newton Raphson Method (example), Curve fitting and interpolation of dataDownloadPDF unavailable
6Lec 6: Newton’s interpolation formula, statistical interpolation of dataDownloadPDF unavailable
7Lec 7: Linear and Polynomial regressionDownloadPDF unavailable
8Lec 8: Numerical differentiationDownloadPDF unavailable
9Lec 9: Numerical differentiation, Error analysisDownloadPDF unavailable
10Lec 10: Numerical integration, Trapezoidal ruleDownloadPDF unavailable
11Lec 11: Simpson’s 1/3rd ruleDownloadPDF unavailable
12Lec 12: Simpson’s 1/3rd rule, Gaussian integrationDownloadPDF unavailable
13Lec 13: Ordinary Differential equationsDownloadPDF unavailable
14Lec 14: Solution of differential equation, Taylor series and Euler methodDownloadPDF unavailable
15Lec 15: Heun’s methodDownloadPDF unavailable
16Lec 16: Runge Kutta methodDownloadPDF unavailable
17Lec 17: Examples of differential equation: Heat conduction equationDownloadPDF unavailable
18Lec 18: Introduction to Monte Carlo techniqueDownloadPDF unavailable
19Lec 19: Details of the Monte Carlo methodDownloadPDF unavailable
20Lec 20: Importance samplingDownloadPDF unavailable
21Lec 21: Applications: Ising modelDownloadPDF unavailable
22Lec 22: Introduction to Molecular DynamicsDownloadPDF unavailable
23Lec 23: Verlet algorithmDownloadPDF unavailable
24Lec 24: Applications of Molecular dynamicsDownloadPDF unavailable