Module-3

Imperfections in Solids
Contents

1) Theoretical yield strength, Point defects and Line defects or Dislocations

2) Interfacial defects, Bulk or Volume defects and Atomic vibrations
Theoretical yield strength

- Ideal solids are made of atoms arranged in an orderly way.

Diagram showing a shear stress, \(\tau \), versus displacement, \(x \), with a periodic structure denoted by \(a \) and \(b \).
Theoretical yield strength (contd…)

- Using a sin function to represent the variation in shear stress

$$\tau = \tau_m \sin \frac{2\Pi x}{b} \quad \tau \approx \tau_m \frac{2\Pi x}{b}$$

$$\tau = G\gamma = \frac{Gx}{a}$$

(Hooke’s law)

$G \approx 20-150$ GPa

Shear strength $\approx 3-30$ GPa

(ideal)

Real strength values $\approx 0.5-10$ MPa

$$\tau_m = \frac{G}{2\Pi} \frac{b}{a}$$

If $b \approx a$
Theoretical yield strength (contd…)

- Theoretical strength of solids shall possess an ideal value in the range of 3-30 GPa.

- Real values observed in practice are 0.5-10 MPa.

- The assumption of perfectly arranged atoms in a solid may not be valid…i.e. atomic order must have been disturbed.

- Disordered atomic region is called *defect* or *imperfection*.

- Based on geometry, defects are: Point defects (zero-D), Line defects (1-D) or Dislocations, Interfacial defects (2-D) and Bulk or Volume defects (3-D).
Point defects

- Point defects are of zero-dimensional i.e. atomic disorder is restricted to point-like regions.

- Thermodynamically stable compared with other kind of defects.
Point defects (contd…)

- Fraction of vacancy sites can be given as follows:

\[
\frac{n}{N} = e^{-\frac{Q}{kT}}
\]

- In ionic crystals, defects can form on the condition of charge neutrality. Two possibilities are:

![Diagram of Frenkel and Schottky defects]
Line defects

- Line defects or Dislocations are abrupt change in atomic order along a line.

- They occur if an incomplete plane inserted between perfect planes of atoms or when vacancies are aligned in a line.

- A dislocation is the defect responsible for the phenomenon of slip, by which most metals deform plastically.

- Dislocations occur in high densities \((10^8-10^{10} \text{ m}^{-2})\), and are intimately connected to almost all mechanical properties which are in fact structure-sensitive.

- Dislocation form during plastic deformation, solidification or due to thermal stresses arising from rapid cooling.
Line defects – Burger’s vector

- A dislocation in characterized by Burger’s vector, b.

- It is unique to a dislocation, and usually have the direction of close packed lattice direction. It is also the slip direction of a dislocation.

- *It represents the magnitude and direction of distortion associated with that particular dislocation.*

- Two limiting cases of dislocations, edge and screw, are characterized by Burger’s vector perpendicular to the dislocation line (t) and Burger’s vector parallel to the dislocation line respectively. Ordinary dislocation is of mixed character of edge and screw type.
Line defects – Edge dislocation

- It is also called as *Taylor-Orowan dislocation*.

- It will have regions of compressive and tensile stresses on either side of the plane containing dislocation.
Line defects – Screw dislocation

- It is also called as *Burger’s dislocation*.
- It will have regions of shear stress around the dislocation line.
- For positive screw dislocation, dislocation line direction is parallel to Burger’s vector, and vice versa.
Line defects – Dislocation motion

- Dislocations move under applied stresses, and thus causes plastic deformation in solids.

- Dislocations can move in three ways – glide/slip, cross-slip and climb – depending on their character. Slip is conservative in nature, while the climb is non-conservative, and is diffusion-controlled.

- Any dislocation can slip, but in the direction of its burger’s vector.

- Edge dislocation moves by slip and climb.

- Screw dislocation moves by slip / cross-slip. Possibility for cross-slip arises as screw dislocation does not have a preferred slip plane as edge dislocation have.
Line defects – Dislocation characteristics

- A dislocation line cannot end at abruptly inside a crystal. It can close-on itself as a loop, either end at a node or surface.

- *Burger’s vector for a dislocation line is invariant* i.e. it will have same magnitude and direction all along the dislocation line.

- Energy associated with a dislocation because of presence of stresses is proportional to square of Burger’s vector length. Thus dislocations, at least of same nature, tend to stay away from each other.

- Dislocations are, thus, two types – full and partial dislocations. For *full dislocation*, Burger’s vector is integral multiple of inter-atomic distance while for *partial dislocation*, it is fraction of lattice translation.

Interfacial defects

- An interfacial defect is a 2-D imperfection in crystalline solids, and have different crystallographic orientations on either side of it.

- Region of distortion is about few atomic distances.

- They usually arise from clustering of line defects into a plane.

- These imperfections are not thermodynamically stable, but meta-stable in nature.

E.g.: External surface, Grain boundaries, Stacking faults, Twin boundaries, Phase boundaries.
Interfacial defects (contd…)

Grain boundaries

Twin boundaries
Bulk *or* Volume defects

- Volume defects are three-dimensional in nature.

- These defects are introduced, usually, during processing and fabrication operations like casting, forming etc.

 E.g.: Pores, Cracks, Foreign particles

- These defects act like stress raisers, thus deleterious to mechanical properties of parent solids.

- In some instances, foreign particles are added to strengthen the solid – dispersion hardening. Particles added are hindrances to movement of dislocations which have to cut through or bypass the particles thus increasing the strength.
Atomic vibrations

- Atoms are orderly arranged, but they are expected to vibrate about their positions where the amplitude of vibration increases with the temperature.

- After reaching certain temperature, vibrations are vigorous enough to rupture the inter-atomic forces casing melting of solids.

- Average amplitude of vibration at room temperature is about 10^{-12}m i.e. thousandth of a nanometer.

- Frequency of vibrations is the range of 10^{13} Hz.

- Temperature of a solid body is actually a measure of vibrational activity of atoms and/or molecules.