Module 2: Short questions

1. How does transient heat transfer differ from steady state heat transfer?

2. What is meant by the term “one-dimensional” in the context of conduction heat transfer?

3. What is meant by thermal resistance? Under what assumptions can the concept of thermal resistance be applied in a straightforward manner?

4. For heat transfer through a single cylindrical shell with convection on the outside, there is a value for the shell radius for a nonzero shell thickness at which the heat flux is maximized. This value is
 (A) k/h
 (B) h/k
 (C) h/r
 (D) r/h

5. The steady temperature profile in a one-dimensional heat transfer across a plane slab of thickness \(L \) and with uniform heat generation, \(q \), has one maximum. If the slab is cooled by convection at \(x = 0 \) and insulated at \(x = L \), the maximum occurs at a value of \(x \) given by

 \[
 x = \begin{cases}
 0 & \text{(A)} \\
 \frac{L}{2} & \text{(B)} \\
 \frac{q}{k} & \text{(C)} \\
 L & \text{(D)}
 \end{cases}
 \]

6. Consider a cold canned (typically cylindrical in shape) drink left on a table. Would the heat transfer be steady or transient? Would you model the heat transfer as one-, two-, or three-dimensional? Also, which coordinate system would you use to analyse this heat transfer problem?