State Space Approach in Modelling

Dr. Bishakh Bhattacharya
Professor, Department of Mechanical Engineering
IIT Kanpur
Answer of the Last Assignment

Following Mason’s law, there are two forward paths in the SFG:

\[T_1 = G_1 \cdot G_2 \cdot G_3 \text{ and} \]
\[T_2 = G_4 \]

There are four loops:
\[L_1 = -G_1 \cdot H_1 \]
\[L_2 = -G_3 \cdot H_2 \]
\[L_3 = -G_1 \cdot G_2 \cdot G_3 \cdot H_3 \]
\[L_4 = -G_4 \cdot H_3 \]

\[\Delta = 1 - (L_1 + L_2 + L_3 + L_4) + L_1 \cdot L_2 \]

\[\Delta_1 = 1 \]
\[\Delta_2 = 1 \]

Hence, the transfer function could be expressed as \((T_1 + T_2)/ \Delta\)
The Lecture Contains

- State Space Modeling
- EOM of a SDOF system in State Space Form
- Response of a State Space System
- Examples to Solve
State-Space Modelling

The *state* of a model of a dynamic system is a set of independent physical quantities, the specification of which (in the absence of excitation) completely determines the future positions of the system.

Dynamics describes how the state evolves. The *dynamics* of a model is an update rule for the system state that describes how the state evolves, as a function on the current state and any external inputs.

\[
\dot{X} = \begin{bmatrix}
 \dot{x}_1 \\
 \dot{x}_2 \\
 \vdots \\
 \dot{x}_n
\end{bmatrix} = AX(t) + BU(t)
\]
When we talk about electro-mechanical systems modeled by differential equations, such as masses and springs, electric circuits or satellites (rigid bodies) rotating in space, we can attach some additional intuition: the variables in the state should be adequate to specify the **energy** of the system.

For example, take a ball free-falling to earth: we can specify the position of the ball by specifying the height \(h \) above the ground, but we also need to include the velocity of the ball \(\frac{dh}{dt} \) to specify the total energy \(E = \frac{1}{2}m\left(\frac{dh}{dt}\right)^2 + mgh \). Therefore, the state of the ball is \((h, \frac{dh}{dt}) \).
State Space Modelling of a Single Degree of Freedom System

- Consider a SDOF system (with mass M, stiffness K and Damping constant C) such that the equation of motion corresponding to force excitation is given by:

$$M \ddot{x} + C \dot{x} + K x = F(t)$$

- The following pair of states or their linear combinations could be considered for the modelling:

$$\begin{bmatrix} x \\ \dot{x} \end{bmatrix}, \begin{bmatrix} x \\ \dot{x} \\ \ddot{x} \end{bmatrix}, \begin{bmatrix} x \\ \dot{x} \\ \ddot{x} \\ \cdot\cdot\cdot \end{bmatrix}$$
The EOM in State Space Form

• Consider for example, the position and velocity as the state coordinates.

• The state vector could be written as:

\[
X = \begin{bmatrix} x \\ \dot{x} \end{bmatrix}
\]

• Based on these states, the EOM could be rewritten as:

\[
\frac{d}{dt} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k/m & -c/m \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} (f/m)
\]

\[
\dot{X} = AX + BU
\]

\[
A = \begin{bmatrix} 0 & 1 \\ -k/m & -c/m \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad U = f/m
\]
Output of a State-space System

- Many a times states of a system are not directly measurable and hence are not of direct interest. For example, if you consider, state-space representation of a finite element model pertaining to a Spacecraft. The number of states could be as high as three to four thousand! However, one cannot have so many sensors to measure all the states. In such cases, we fix a feasible number of outputs that are observable/measurable.

- Suppose for a system of n-states there are r outputs that are measurable. Then the output vector $Y(t)$ of size r could be represented as a linear combination of input to the system and the states as follows:

$$Y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_r(t) \end{bmatrix} = C X(t) + D U(t)$$

Where C & D are constants for an LTIV system. For majority of dynamic systems it is observed that $D = 0$, meaning outputs are not directly affected by the system inputs.
Time Domain Solution for a Vector State Equation

- \(X(t) = e^{At} X_0 + \int_0^t e^{A(t-\tau)} B U(\tau) \, d\tau \)
- \(e^{At} = I + At + (At)^2/2! + (At)^3/3! \)
- \(X(s) = (sl-A)^{-1} B U(s) \)
- Find out the eigen values and eigen vectors of \(sl-A \), Obtain the transformation matrix and convert the state matrix into diagonal form
- Solve using a Discrete Time -Model
Special References for this Lecture

- *Feedback Control of Dynamic Systems* – Franklin, Powell and Naeini, Pearson

 Education Asia

- *Control Systems Engineering* – Norman S Nise, John Wiley & Sons

- *Modern Control Engineering* – K. Ogata, Prentice Hall

- Control System Design – B Friedland, Dover
Find out the EOM for the following mechanical system in state space form: