Module 7 : CNC Programming and Industrial Robotics

Lecture 5 : Industrial robotics-1

2.3 Drive systems

Basically three types of drive systems are commonly used to actuate robotic joints. These are electric, hydraulic, and pneumatic drives. Electric motors are the prime movers in robots. Servo-motors or steeper motors are widely used in robotics. Hydraulic and pneumatic systems such as piston-cylinder systems, rotary vane actuators are used to accomplish linear motions, and rotary motions of joints respectively.

Pneumatic drive is regularly used for smaller, simpler robotic applications; whereas electric and hydraulic drives may be found applications on more sophisticated industrial robots. Due to the advancement in electric motor technology made in recent years, electric drives are generally favored in commercial applications. They also have compatibility to computing systems. Hydraulic systems, although not as flexible as electrical drives, are generally used where larger speeds are required. They are generally employed to carry out heavy duty operations using robots.

The combination of drive system, sensors, and feedback control system determines the dynamic response characteristics of the manipulator. Speed in robotic terms refers to the absolute velocity of the manipulator at its end-of-arm. It can be programmed into the work cycle so that different portions of the cycle are carried out at different velocities. Acceleration and deceleration control are also important factors, especially in a confined work envelope. The robot's ability to control the switching between velocities is a key determinant of the manipulator's capabilities. Other key determinants are the weight (mass) of the object being manipulated, and the precision that is required to locate and position the object correctly. All of these determinants are gathered under the term ‘speed of response', which is defined as the time required for the manipulator to move from one point in space to the next. Speed of response influences the robot's cycle time, which in turn affects the production rate that can be achieved.

Stability refers to the amount of overshoot and oscillation that occurs in the robot motion at the end-of-arm as it attempts to move to the next programmed location. More oscillations in the robotic motion lead to less stability in the robotic manipulator. However, greater stability may produce a robotic system with slower response times.

Load carrying capacity is also an important factor. It is determined by weight of the gripper used to grasp the objects. A heavy gripper puts a higher load upon the robotic manipulator in addition to the object mass. Commercial robots can carry loads of up to 900 kg, while medium-sized industrial robots may have capacities of up to 45kg.