Objectives

In this class:
- Derivation of conservation of momentum equation is completed.

Conservation of Momentum

Derivation-8
- Now consider the influx of momentum due to mass entering the control volume. Let velocity be u, v, w in the x, y and z directions.
- Momentum entering the control volume in the ‘y’ direction due to mass entering the ‘$y = 0$’, ‘$z = 0$’ and ‘$x = 0$’ faces is $(\rho v dxdz)v$, $(\rho wdxdv)v$ and $(\rho udxdw)v$.
- Momentum leaving due to mass leaving the control volume at $y = dy$, $z = dz$ and $x = dx$ is obtained from the Taylor series expansion with only the leading term retained.

Conservation of Momentum

Derivation-9
- All the momentum terms in ‘y’ direction due to mass entering or leaving the control volume are given on the figure below; term on $x = 0$ face omitted for clarity.

Conservation of Momentum

Derivation-10
- Net influx of momentum in ‘y’ direction due to mass influx

$$
\rho v dxdz + \rho wdxdy + \rho udxdy

- \left(\rho v \frac{\partial}{\partial y} + \rho \frac{\partial v}{\partial y} + \rho \frac{\partial w}{\partial y} + \rho \frac{\partial u}{\partial x} \right) dxdydz

= - \left(\frac{\partial}{\partial y} \rho \frac{\partial v}{\partial y} + \frac{\partial}{\partial z} \rho \frac{\partial w}{\partial y} + \frac{\partial}{\partial x} \rho \frac{\partial u}{\partial y} \right) dxdydz
$$

(11.1)
- In addition to surface forces due to the stresses, assume body forces are present.

Conservation of Momentum

Derivation-11
- Assume body forces are present. Body force vector (per unit mass) is denoted by:
Net influx of momentum into control volume is due to:
- mass entering (equation 11.1)
- force on the control volume faces (equation 10.8)
- Body force (equation 11.2)

Net accumulation rate is \(\frac{\partial}{\partial t} \rho \mathbf{v} dxdydz \)

Conservation of Momentum

Derivation-12

The overall momentum balance equation therefore becomes

\[
- \left(\frac{\partial}{\partial y} \rho v^2 + \frac{\partial}{\partial z} \rho wv + \frac{\partial}{\partial x} \rho uv \right) dxdydz + \left[\frac{\partial}{\partial y} \tau_{yx} + \frac{\partial}{\partial z} \tau_{zx} + \frac{\partial}{\partial x} \tau_{xy} \right] dxdydz
- \frac{\partial}{\partial t} \rho \mathbf{v} dxdydz + \rho \mathbf{X} dxdydz = 0
\]

Derivation-13

Newton examined results of a large number of experiments and proposed the following relationship for shear stress: \(\tau = \mu \frac{du}{dy} \) for 1D.

This shear stress can be generalized using the nomenclature adopted earlier to get:

\[
\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \text{ for } i \neq j
\]

A relationship between velocities and stress is established using the above equation.

Derivation-14

The following relationship, called the Stokes constitutive relationship, will be used here without deriving it.

\[
\tau_{ij} = \left(-P - \frac{2}{3} \mu \nabla \cdot \mathbf{u} \right) \delta_{ij} + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)
\]

\[
\delta_{ij} = 0 \text{ for } i \neq j
\]

\[
\delta_{ij} = 1 \text{ for } i = j
\]

\(\mathbf{u} = u_{\hat{x}} \mathbf{i} + u_{\hat{y}} \mathbf{j} + u_{\hat{z}} \mathbf{k} \)

Derivation-15

Now, consider the stress terms in the momentum equation and substitute the Stokes relationship to get:

\[
\frac{\partial}{\partial y} \tau_{xy} + \frac{\partial}{\partial x} \tau_{xy} + \frac{\partial}{\partial z} \tau_{xy} = \text{ From momentum equation}
\]
After substituting Stokes relationship (11.6)

\[- \frac{\partial P}{\partial y} + \frac{\partial}{\partial y} \left(\frac{2}{3} \mu \nabla \vec{u} \right) + \frac{\partial}{\partial y} \left(2 \mu \frac{\partial \nu}{\partial y} \right) + \frac{\partial}{\partial x} \left(\mu \left(\frac{\partial u}{\partial y} + \frac{\partial \nu}{\partial x} \right) \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial \nu}{\partial z} + \frac{\partial \omega}{\partial y} \right) \]

Conservation of Momentum

Derivation-16

- In addition if \(\mu \) is assumed constant the equation becomes:

\[
\frac{\partial}{\partial y} \tau_{yy} + \frac{\partial}{\partial x} \tau_{xy} + \frac{\partial}{\partial z} \tau_{yz} = - \frac{\partial P}{\partial y} - \frac{2}{3} \mu \frac{\partial}{\partial y} \left(\nabla \vec{u} \right) \\
+ 2 \mu \frac{\partial}{\partial y} \left(\frac{\partial \nu}{\partial y} \right) + \mu \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} + \frac{\partial \nu}{\partial x} \right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial \nu}{\partial z} + \frac{\partial \omega}{\partial y} \right) \]

(11.7)

- For an incompressible fluid it has been shown earlier that (refer equn (10.7a))

\[
\nabla \vec{u} = 0 \]

(10.7 a)

Conservation of Momentum

Derivation-17

- Since velocity is a continuous function, cross differentiation is permissible:

\[
\frac{\partial}{\partial y} \frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \frac{\partial u}{\partial y} \]

(11.8)

- Use equn (10.7a) and equn (11.8) in equn (11.6):

\[
\frac{\partial}{\partial y} \tau_{yy} + \frac{\partial}{\partial x} \tau_{xy} + \frac{\partial}{\partial z} \tau_{yz} = - \frac{\partial P}{\partial y} - \frac{2}{3} \mu \frac{\partial}{\partial y} \left(\nabla \vec{u} \right) \\
\quad = 0 \\
+ \mu \left(\frac{\partial^{2} \nu}{\partial x^{2}} + \frac{\partial^{2} \nu}{\partial y^{2}} + \frac{\partial^{2} \nu}{\partial z^{2}} \right) + \mu \left(\frac{\partial u}{\partial x} + \frac{\partial \nu}{\partial y} + \frac{\partial \omega}{\partial z} \right) \]

(11.9)

Conservation of Momentum

Derivation-18

- Substituting Equ 11.9 in equ 11.3:

\[
\frac{\partial}{\partial x} (\rho \nu) + \frac{\partial}{\partial x} \rho u \nu + \frac{\partial}{\partial y} \rho v \nu + \frac{\partial}{\partial z} \rho w \nu = \\
\rho \nu \frac{\partial P}{\partial y} + \mu \left(\frac{\partial^{2} \nu}{\partial x^{2}} + \frac{\partial^{2} \nu}{\partial y^{2}} + \frac{\partial^{2} \nu}{\partial z^{2}} \right) \]

(11.10)

- Above equation is called the conservative form of the momentum equation since it is the ‘original’ form obtained from the conservation equations and no simplifications are as yet applied.

Conservation of momentum

Derivation-19

- Expand LHS of equn (11.10) to get:
\[
\frac{\partial}{\partial t} (\rho v) + \frac{\partial}{\partial x} \rho u v + \frac{\partial}{\partial y} \rho v^2 + \frac{\partial}{\partial z} \rho w v
\]
\[
= \rho \left[\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right] + v \left[\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} + \frac{\partial \rho w}{\partial z} \right] = 0
\]

- Second term is zero from continuity (eqn 10.6)

Conservation of momentum

Derivation - 20

- The 'y' component of the momentum equation therefore becomes (Note that \(\nu = \frac{\mu}{\rho} \)):

\[
\left[\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right] =
\[
X_y + \nu \left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right] - \frac{1}{\rho} \frac{\partial p}{\partial y}
\] (11.11)

Conservation of Momentum

Derivation - 21

- The above Y-momentum equation is written in a compact form in the following fashion:

\[
\frac{dv}{dt} = X_y + \nu \nabla^2 v - \frac{1}{\rho} \frac{\partial p}{\partial y}
\]

\[
\nabla^2 v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}
\]

\[
\frac{dv}{dt} = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z}
\]

- X and Z momentum can be similarly derived

Conservation of momentum

Derivation - 22

- The final set of momentum equations are:

\[
\frac{dv}{dt} = X_y + \nu \nabla^2 v - \frac{1}{\rho} \frac{\partial p}{\partial y}
\] (11.12)

\[
\frac{du}{dt} = X_x + \nu \nabla^2 u - \frac{1}{\rho} \frac{\partial p}{\partial x}
\] (11.13)

\[
\frac{dw}{dt} = X_z + \nu \nabla^2 w - \frac{1}{\rho} \frac{\partial p}{\partial z}
\] (11.14)

- The above equations are derived for laminar, incompressible, constant viscosity, Newtonian fluids

Recap

In this class:

- Derivation of conservation of momentum equation is completed.