Modules / Lectures
Module NameDownload


Sl.No Chapter Name MP4 Download
1Lecture 1A : IntroductionDownload
2Lecture 1B : Isoperimetric problemDownload
3Lecture 1C : Review of real analysis (sequences and convergence)Download
4Lecture 2A : Bolzano-Weierstrass theorem and completeness axiomDownload
5Lecture 2B : Open sets, closed sets and compact setsDownload
6Lecture 2C : Continuity and Weierstrass theoremDownload
7Lecture 3A : Weierstrass theoremDownload
8Lecture 3B : Different solution conceptsDownload
9Lecture 3C : Different types of constraintsDownload
10Lecture 4A : Taylor's theoremDownload
11Lecture 4B: First order sufficient conditionDownload
12Lecture 4C : Second order necessary conditionDownload
13Lecture 5A : Least square regressionDownload
14Lecture 5B : Least square regression (continued)Download
15Lecture 5C : Implicit function theoremDownload
16Lecture 6A : Optimization with equality constraints and introduction to Lagrange multipliers - IDownload
17Lecture 6B :Optimization with equality constraints and introduction to Lagrange multipliers - IIDownload
18Lecture 6C :Least norm solution of underdetermined linear systemDownload
19Lecture 7A: Transformation of optimization problems - IDownload
20Lecture 7B : Transformation of optimization problems - IIDownload
21Lecture 7C: Transformation of optimization problems - IIIDownload
22Lecture 8A: Convex Analysis - IDownload
23Lecture 8B: Convex Analysis - IIDownload
24Lecture 8C: Convex Analysis - IIIDownload
25Lecture 9A: PolyhedronsDownload
26Lecture 9B: Minkowski-Weyl TheoremDownload
27Lecture 9C: Linear Programming ProblemsDownload
28Lecture 10A: Extreme points and optimal solution of an LPDownload
29Lecture 10B: Extreme points and optimal solution of an LP (continued)Download
30Lecture 10C: Extreme points and basic feasible solutionsDownload
31Lecture 11A: Equivalence of extreme point and BFSDownload
32Lecture 11B: Equivalence of extreme point and BFS (continued)Download
33Lecture 11C: Examples of Linear ProgrammingDownload
34Lecture 12A: Weak and Strong dualityDownload
35Lecture 12B: Proof of strong dualityDownload
36Lecture 12C: Proof of strong duality (continued)Download
37Lecture 13A: Farkas' lemmaDownload
38Lecture 13B: Max-flow Min-cut problemDownload
39Lecture 13C: Shortest path problemDownload
40Lecture 14A: Complementary SlacknessDownload
41Lecture 14B: Proof of complementary slacknessDownload
42Lecture 14C: Tangent conesDownload
43Lecture 15A:Tangent cones (continued)Download
44Lecture 15B: Constraint qualifications, Farkas' lemma and KKTDownload
45Lecture 16A: KKT conditionsDownload
46Lecture 16B:Convex optimization and KKT conditionsDownload
47Lecture 17A: Slater condition and Lagrangian DualDownload
48Lecture 17B: Weak duality in convex optimization and Fenchel dualDownload
49Lecture 17C: Geometry of the LagrangianDownload
50Lecture 18A: Strong duality in convex optimization - IDownload
51Lecture 18B: Strong duality in convex optimization - IIDownload
52Lecture 18C: Strong duality in convex optimization - IIIDownload
53Lecture 19A: Line search methods for unconstrained optimizationDownload
54Lecture 19B: Wolfe conditionsDownload
55Lecture 19C: Line search algorithm and convergenceDownload
56Lecture 20A: Steepest descent method and rate of convergenceDownload
57Lecture 20B: Newton's methodDownload
58Lecture 20C: Penalty methodsDownload
59Lecture 21A: L1 and L2 Penalty methodsDownload
60Lecture 21B: Augmented Lagrangian methodsDownload
61Lecture 21C: Cutting plane methodsDownload
62Lecture 22: Interior point methods for linear programmingDownload
63Lecture 23A: Dynamic programming: Inventory control problemDownload
64Lecture 23B: Policy and value functionDownload
65Lecture 24A: Principle of optimality in dynamic programmingDownload
66Lecture 24B: Principle of optimality applied to inventory control problemDownload
67Lecture 24C: Optimal control for a system with linear state dynamics and quadratic costDownload

Sl.No Chapter Name English
1Lecture 1A : IntroductionPDF unavailable
2Lecture 1B : Isoperimetric problemPDF unavailable
3Lecture 1C : Review of real analysis (sequences and convergence)PDF unavailable
4Lecture 2A : Bolzano-Weierstrass theorem and completeness axiomPDF unavailable
5Lecture 2B : Open sets, closed sets and compact setsPDF unavailable
6Lecture 2C : Continuity and Weierstrass theoremPDF unavailable
7Lecture 3A : Weierstrass theoremPDF unavailable
8Lecture 3B : Different solution conceptsPDF unavailable
9Lecture 3C : Different types of constraintsPDF unavailable
10Lecture 4A : Taylor's theoremPDF unavailable
11Lecture 4B: First order sufficient conditionPDF unavailable
12Lecture 4C : Second order necessary conditionPDF unavailable
13Lecture 5A : Least square regressionPDF unavailable
14Lecture 5B : Least square regression (continued)PDF unavailable
15Lecture 5C : Implicit function theoremPDF unavailable
16Lecture 6A : Optimization with equality constraints and introduction to Lagrange multipliers - IPDF unavailable
17Lecture 6B :Optimization with equality constraints and introduction to Lagrange multipliers - IIPDF unavailable
18Lecture 6C :Least norm solution of underdetermined linear systemPDF unavailable
19Lecture 7A: Transformation of optimization problems - IPDF unavailable
20Lecture 7B : Transformation of optimization problems - IIPDF unavailable
21Lecture 7C: Transformation of optimization problems - IIIPDF unavailable
22Lecture 8A: Convex Analysis - IPDF unavailable
23Lecture 8B: Convex Analysis - IIPDF unavailable
24Lecture 8C: Convex Analysis - IIIPDF unavailable
25Lecture 9A: PolyhedronsPDF unavailable
26Lecture 9B: Minkowski-Weyl TheoremPDF unavailable
27Lecture 9C: Linear Programming ProblemsPDF unavailable
28Lecture 10A: Extreme points and optimal solution of an LPPDF unavailable
29Lecture 10B: Extreme points and optimal solution of an LP (continued)PDF unavailable
30Lecture 10C: Extreme points and basic feasible solutionsPDF unavailable
31Lecture 11A: Equivalence of extreme point and BFSPDF unavailable
32Lecture 11B: Equivalence of extreme point and BFS (continued)PDF unavailable
33Lecture 11C: Examples of Linear ProgrammingPDF unavailable
34Lecture 12A: Weak and Strong dualityPDF unavailable
35Lecture 12B: Proof of strong dualityPDF unavailable
36Lecture 12C: Proof of strong duality (continued)PDF unavailable
37Lecture 13A: Farkas' lemmaPDF unavailable
38Lecture 13B: Max-flow Min-cut problemPDF unavailable
39Lecture 13C: Shortest path problemPDF unavailable
40Lecture 14A: Complementary SlacknessPDF unavailable
41Lecture 14B: Proof of complementary slacknessPDF unavailable
42Lecture 14C: Tangent conesPDF unavailable
43Lecture 15A:Tangent cones (continued)PDF unavailable
44Lecture 15B: Constraint qualifications, Farkas' lemma and KKTPDF unavailable
45Lecture 16A: KKT conditionsPDF unavailable
46Lecture 16B:Convex optimization and KKT conditionsPDF unavailable
47Lecture 17A: Slater condition and Lagrangian DualPDF unavailable
48Lecture 17B: Weak duality in convex optimization and Fenchel dualPDF unavailable
49Lecture 17C: Geometry of the LagrangianPDF unavailable
50Lecture 18A: Strong duality in convex optimization - IPDF unavailable
51Lecture 18B: Strong duality in convex optimization - IIPDF unavailable
52Lecture 18C: Strong duality in convex optimization - IIIPDF unavailable
53Lecture 19A: Line search methods for unconstrained optimizationPDF unavailable
54Lecture 19B: Wolfe conditionsPDF unavailable
55Lecture 19C: Line search algorithm and convergencePDF unavailable
56Lecture 20A: Steepest descent method and rate of convergencePDF unavailable
57Lecture 20B: Newton's methodPDF unavailable
58Lecture 20C: Penalty methodsPDF unavailable
59Lecture 21A: L1 and L2 Penalty methodsPDF unavailable
60Lecture 21B: Augmented Lagrangian methodsPDF unavailable
61Lecture 21C: Cutting plane methodsPDF unavailable
62Lecture 22: Interior point methods for linear programmingPDF unavailable
63Lecture 23A: Dynamic programming: Inventory control problemPDF unavailable
64Lecture 23B: Policy and value functionPDF unavailable
65Lecture 24A: Principle of optimality in dynamic programmingPDF unavailable
66Lecture 24B: Principle of optimality applied to inventory control problemPDF unavailable
67Lecture 24C: Optimal control for a system with linear state dynamics and quadratic costPDF unavailable


Sl.No Language Book link
1EnglishNot Available
2BengaliNot Available
3GujaratiNot Available
4HindiNot Available
5KannadaNot Available
6MalayalamNot Available
7MarathiNot Available
8TamilNot Available
9TeluguNot Available