Analysis of Variance and Design of Experiments-I

MODULE - I

LECTURE - 1

SOME RESULTS ON LINEAR ALGEBRA, MATRIX THEORY AND DISTRIBUTIONS

Dr. Shalabh
Department of Mathematics and Statistics
Indian Institute of Technology Kanpur
We need some basic knowledge to understand the topics in analysis of variance.

Vectors

A vector \(Y \) is an ordered \(n \)-tuple of real numbers. A vector can be expressed as row vector or a column vector as

\[
Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}
\]

is a column vector of order \(n \times 1 \).

and

\[
Y' = (y_1, y_2, \ldots, y_n)
\]

is a row vector of order \(1 \times n \).

If all \(y_i = 0 \) for all \(i = 1, 2, \ldots, n \) then \(Y' = (0, 0, \ldots, 0) \) is called the **null vector**.

If

\[
X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad Z = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix}
\]

then

\[
X + Y = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix}, \quad kY = \begin{pmatrix} ky_1 \\ ky_2 \\ \vdots \\ ky_n \end{pmatrix}
\]
\[X + (Y + Z) = (X + Y) + Z \]
\[X' (Y + Z) = X' Y + X' Z \]
\[k(X' Y) = (kX)' Y = X'(kY) \]
\[k(X + Y) = kX + kY \]
\[X' Y = x_1y_1 + x_2y_2 + \ldots + x ny_n \]

where \(k \) is a scalar.

Orthogonal vectors

Two vectors \(X \) and \(Y \) are said to be orthogonal if \(X'Y = Y'X = 0 \).

The null vector is orthogonal to every vector \(X \) and is the only such vector.

Linear combination

if \(x_1, x_2, \ldots, x_m \) are \(m \) vectors of same order and \(k_1, k_2, \ldots, k_m \) are scalars, Then

\[t = \sum_{i=1}^{m} k_i x_i \]

is called the linear combination of \(x_1, x_2, \ldots, x_m \).
Linear independence

If X_1, X_2, \ldots, X_m are m vectors then they are said to be linearly independent if there exist scalars k_1, k_2, \ldots, k_m such that

$$
\sum_{i=1}^{m} k_i X_i = 0 \Rightarrow k_i = 0 \text{ for all } i = 1, 2, \ldots, m.
$$

If there exist k_1, k_2, \ldots, k_m with at least one k_i to be nonzero, such that $\sum_{i=1}^{m} k_i x_i = 0$ then x_1, x_2, \ldots, x_m are said to be linearly dependent.

- Any set of vectors containing the null vector is linearly dependent.
- Any set of non-null pair-wise orthogonal vectors is linearly independent.
- If $m > 1$ vectors are linearly dependent, it is always possible to express at least one of them as a linear combination of the others.
Linear function

Let \(K = (k_1, k_2, \ldots, k_m)' \) be a \(m \times 1 \) vector of scalars and \(X = (x_1, x_2, \ldots, x_m) \) be a \(m \times 1 \) vector of variables, then

\[
K'Y = \sum_{i=1}^{m} k_i y_i
\]

is called a linear function or linear form. The vector \(K \) is called the **coefficient vector**.

For example, mean of \(x_1, x_2, \ldots, x_m \) can be expressed as

\[
\bar{x} = \frac{1}{m} \sum_{i=1}^{m} x_i = \frac{1}{m} \begin{pmatrix} 1, & 1, & \ldots, & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = \frac{1}{m} \mathbf{1}_m'X
\]

where \(\mathbf{1}_m' \) is a \(m \times 1 \) vector of all elements unity.

Contrast

The linear function \(K'X = \sum_{i=1}^{m} k_i x_i \) is called a contrast in \(x_1, x_2, \ldots, x_m \) if \(\sum_{i=1}^{m} k_i = 0 \).

For example, the linear functions

\[
x_1 - x_2, 2x_1 - 3x_2 + x_3, \frac{x_1}{2} - x_2 + \frac{x_3}{3}
\]

are contrasts.

- A linear function \(K'X \) is a contrast if and only if it is orthogonal to a linear function \(\sum_{i=1}^{m} x_i \) or to the linear function \(\bar{x} = \frac{1}{m} \sum_{i=1}^{m} x_i \).
- Contrasts \(x_1 - x_2, x_1 - x_3, \ldots, x_i - x_j \) are linearly independent for all \(j = 2, 3, \ldots, m \).
- Every contrast in \(x_1, x_2, \ldots, x_n \) can be written as a linear combination of \((m - 1)\) contrasts \(x_1 - x_2, x_1 - x_3, \ldots, x_1 - x_m \).
A matrix is a rectangular array of real numbers. For example,

\[
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\]

is a matrix of order \(m \times n \) with \(m \) rows and \(n \) columns.

- If \(m = n \), then \(A \) is called a square matrix.
- If \(a_{ij} = 0, \ i \neq j, m = n \), then \(A \) is a diagonal matrix and is denoted as \(A = \text{diag}(a_{11}, a_{22}, \ldots, a_{nn}) \).
- If \(m = n \), (square matrix) and \(a_{ij} = 0 \) for \(i > j \), then \(A \) is called an upper triangular matrix. On the other hand if \(m = n \), and \(a_{ij} = 0 \) for \(i < j \) then \(A \) is called a lower triangular matrix.
- If \(A \) is a \(m \times n \) matrix, then the matrix obtained by writing the rows of \(A \) and columns of \(A \) as columns of \(A \) and rows of \(A \) respectively, is called the transpose of a matrix \(A \) and is denoted as \(A' \).
- If \(A = A' \) then \(A \) is a symmetric matrix.
- If \(A = -A' \) then \(A \) is skew symmetric matrix.
- A matrix whose all elements are equal to zero is called as null matrix.
- An identity matrix is a square matrix of order \(p \) whose diagonal elements are unity (ones) and all the off diagonal elements are zero. It is denotes as \(I_p \).
• If A and B are matrices of order $m \times n$ then

 $(A + B)' = A' + B'$.

• If A and B are the matrices of order $m \times n$ and $n \times p$ respectively and k is any scalar, then

 $(AB)' = B'A'$

 $(kA)B = A(kB) = k(AB) = kAB$.

• If the orders of matrices A is $m \times n$, B is $n \times p$ and C is $n \times p$ then

 $A(B + C) = AB + AC$.

• If the orders of matrices A is $m \times n$, B is $n \times p$ and C is $p \times q$ then

 $(AB)C = A(BC)$.

• If A is the matrix of order $m \times n$ then

 $I_mA = AI_n = A$.
Trace of a matrix

The trace of $n \times n$ matrix A, denoted as $tr(A)$ or $\text{trace}(A)$ is defined to be the sum of all the diagonal elements of A, i.e., $tr(A) = \sum_{i=1}^{n} a_{ii}$.

- If A is of order $m \times n$ and B is of order $n \times m$, then
 $$tr(AB) = tr(BA).$$

- If A is $n \times n$ matrix and P is any nonsingular $n \times n$ matrix then
 $$tr(A) = tr(P^{-1}AP).$$
 If P is an orthogonal matrix then $tr(A) = tr(P'AP)$.

- If A and B are $n \times n$ matrices, a and b are scalars then
 $$tr(aA + bB) = a tr(A) + b tr(B).$$

- If A is a $m \times n$ matrix, then
 $$tr(A' A) = tr(AA') = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij}^2$$
 and
 $$tr(A' A) = tr(AA') = 0 \text{ if and only if } A = 0.$$

- If A is $n \times n$ matrix then
 $$tr(A') = trA.$$
Rank of a matrix

The rank of a matrix A of $m \times n$ is the number of linearly independent rows in A.

Let B be another matrix of order $n \times q$.

- A square matrix of order m is called **non-singular** if it has a full rank.
- $\text{rank}(AB) \leq \min(\text{rank}(A), \text{rank}(B))$.
- $\text{rank}(A + B) \leq \text{rank}(A) + \text{rank}(B)$.
- Rank of A is equal to the maximum order of all nonsingular square sub-matrices of A.
- $\text{rank}(AA') = \text{rank}(A'A) = \text{rank}(A) = \text{rank}(A')$.
- A is of full row rank if $\text{rank}(A) = m < n$.
- A is of full column rank if $\text{rank}(A) = n < m$.
Inverse of matrix

The inverse of a square matrix A of order m, is a square matrix of order m, denoted as A^{-1}, such that $A^{-1}A = AA^{-1} = I_m$.

The inverse of A exists if and only if A is non singular.

- $(A^{-1})^{-1} = A$.
- If A is non singular, then $(A')^{-1} = (A^{-1})'$.
- If A and B are non-singular matrices of same order, then their product, if defined, is also nonsingular and $(AB)^{-1} = B^{-1}A^{-1}$.

Idempotent matrix

A square matrix A is called idempotent if $A^2 = AA = A$.

If A is an $n \times n$ idempotent matrix with $\text{rank}(A) = r \leq n$. Then

- the eigenvalues of A are 1 or 0.
- $\text{trace}(A) = \text{rank}(A) = r$.
- If A is of full rank n, then $A = I_n$.
- If A and B are idempotent and $AB = BA$, then AB is also idempotent.
- If A is idempotent then $(I - A)$ is also idempotent and $A(I - A) = (I - A)A = 0$.