Modules / Lectures


Sl.No Chapter Name MP4 Download
1mod01lec01 - Introduction to complex numbersDownload
2mod01lec02 - The triangle inequalityDownload
3mod01lec03 - The de Moivre formulaDownload
4mod01lec04 - Roots of unityDownload
5mod01lec05 - Functions of a complex variable and the notion of continuityDownload
6mod01lec06 - Derivative of a complex functionDownload
7mod01lec07 - Differentiation rules for a complex functionDownload
8mod01lec08 - Cauchy-Riemann EquationsDownload
9mod01lec09 - Sufficient conditions for differentiabilityDownload
10mod01lec10 - Cauchy-Riemann conditions in polar coordinatesDownload
11mod01lec11 - More persepective on differentiabilityDownload
12mod01lec12 - The value of the derivativeDownload
13mod02lec13 - Analytic functionsDownload
14mod02lec14 - Harmonic functionsDownload
15mod02lec15 - The exponential functionDownload
16mod02lec16 - Complex logarithmDownload
17mod02lec17 - Complex exponentsDownload
18mod02lec18 - Trigonometric functions of complex variablesDownload
19mod02lec19 - Hyperbolic functions of complex variablesDownload
20mod02lec20 - Inverse Trigonometric and Hyperbolic functionsDownload
21mod02lec21 - Branch of a multivalued functionDownload
22mod03lec22 - Contour IntegralsDownload
23mod03lec23 - Green's TheoremDownload
24mod03lec24 - Path dependence of the contour intergalDownload
25mod03lec25 - AntiderivativesDownload
26mod03lec26 - The Cauchy theoremDownload
27mod03lec27 - Crossing contours and multiply connected domainsDownload
28mod03lec28 - Cauchy Integral formulaDownload
29mod03lec29 - Derivatives of an analytic functionDownload
30mod03lec30 - Liouville's theorem and the Fundamental theorem of algebraDownload
31mod04lec31 - Taylor SeriesDownload
32mod04lec32 - Laurent SeriesDownload
33mod04lec33 - ConvergenceDownload
34mod04lec34 - Differentiation and integration of power seriesDownload
35mod04lec35 - Isolated SingularitiesDownload
36mod04lec36 - ResiduesDownload
37mod04lec37 - Residue TheoremDownload
38mod04lec38 - Evaluation of integrals-IDownload
39mod04lec39 - Evaluation of integrals-IIDownload
40mod04lec40 - Analytic ContinuationDownload
41mod05lec41 - Introduction of orthogonal polynomialsDownload
42mod05lec42 - How to construct orthogonal polynomialsDownload
43mod05lec43 - The weight functionDownload
44mod05lec44 - Recursion relationsDownload
45mod05lec45 - Differential equation satisfied by the orthogonal polynomialsDownload
46mod05lec46 - Hermite polynomialsDownload
47mod05lec47 - Properties of Hemite polynomialsDownload
48mod05lec48 - Legendre polynomialsDownload
49mod05lec49 - Legendre polynomials: recurrence relationDownload
50mod06lec50 - Differential equation corresponding to Legendre polynomialsDownload
51mod06lec51 - The generating function corresponding to Legendre polynomialsDownload
52mod06lec52 - Laguerre PolynomialsDownload
53mod06lec53 - Laguerre Polynomials: recurrence relationDownload
54mod06lec54 - Laguerre polynomials: differential equationDownload
55mod06lec55 - Laguerre polynomials: generating functionDownload
56mod06lec56 - Bessel functions: series definationDownload
57mod06lec57 - Bessel functions: recurrence relationsDownload
58mod06lec58 - Bessel functions: differential equationDownload
59mod06lec59 - Bessel functions of integral order: generating functionDownload
60mod06lec60 - Bessel function: orthogonalityDownload
61mod07lec61 - Classification of Second Order PDEsDownload
62mod07lec62 - Canonical Forms for Hyperbolic PDEsDownload
63mod07lec63 - Canonical Forms for Parabolic PDEsDownload
64mod07lec64 - Canonical Forms for Elliptic PDEsDownload
65mod07lec65 - Tha Laplace EquationDownload
66mod07lec66 - The Laplace Equation: Separation of VariablesDownload
67mod07lec67 - The Laplace Equation: Dirichlet and Neumann boundary conditionsDownload
68mod07lec68 - The Laplace Equation in Cartesian coordinatesDownload
69mod07lec69 - The Laplace Equation for a 3-D rectangular boxDownload
70mod08lec70 - The Laplace Equation in spherical coordinatesDownload
71mod08lec71 - The Laplace Equation in Spherical Coordinates: SolutionDownload
72mod08lec72 - The Laplace Equation in Spherical Coordinates: illustrative examplesDownload
73mod08lec73 - The Poisson's Equation: Green's function solutionDownload
74mod08lec74 - The heat equation: a heuristic discussionDownload
75mod08lec75 - From the random walk to the diffusion equationDownload
76mod08lec76 - Solution of the Diffusion equationDownload
77mod08lec77 - The Diffusion equation with Dirichlet and Neumann boundary conditionsDownload
78mod08lec78 - The Heat equation: illustrative examplesDownload
79mod08lec79 - The Wave equation: Method of characteristicsDownload
80mod08lec80 - The Wave equation: Separation of variablesDownload

Sl.No Chapter Name English
1mod01lec01 - Introduction to complex numbersDownload
Verified
2mod01lec02 - The triangle inequalityDownload
Verified
3mod01lec03 - The de Moivre formulaPDF unavailable
4mod01lec04 - Roots of unityPDF unavailable
5mod01lec05 - Functions of a complex variable and the notion of continuityPDF unavailable
6mod01lec06 - Derivative of a complex functionPDF unavailable
7mod01lec07 - Differentiation rules for a complex functionPDF unavailable
8mod01lec08 - Cauchy-Riemann EquationsPDF unavailable
9mod01lec09 - Sufficient conditions for differentiabilityPDF unavailable
10mod01lec10 - Cauchy-Riemann conditions in polar coordinatesPDF unavailable
11mod01lec11 - More persepective on differentiabilityPDF unavailable
12mod01lec12 - The value of the derivativePDF unavailable
13mod02lec13 - Analytic functionsPDF unavailable
14mod02lec14 - Harmonic functionsPDF unavailable
15mod02lec15 - The exponential functionPDF unavailable
16mod02lec16 - Complex logarithmPDF unavailable
17mod02lec17 - Complex exponentsPDF unavailable
18mod02lec18 - Trigonometric functions of complex variablesPDF unavailable
19mod02lec19 - Hyperbolic functions of complex variablesPDF unavailable
20mod02lec20 - Inverse Trigonometric and Hyperbolic functionsPDF unavailable
21mod02lec21 - Branch of a multivalued functionPDF unavailable
22mod03lec22 - Contour IntegralsPDF unavailable
23mod03lec23 - Green's TheoremPDF unavailable
24mod03lec24 - Path dependence of the contour intergalPDF unavailable
25mod03lec25 - AntiderivativesPDF unavailable
26mod03lec26 - The Cauchy theoremPDF unavailable
27mod03lec27 - Crossing contours and multiply connected domainsPDF unavailable
28mod03lec28 - Cauchy Integral formulaPDF unavailable
29mod03lec29 - Derivatives of an analytic functionPDF unavailable
30mod03lec30 - Liouville's theorem and the Fundamental theorem of algebraPDF unavailable
31mod04lec31 - Taylor SeriesPDF unavailable
32mod04lec32 - Laurent SeriesPDF unavailable
33mod04lec33 - ConvergencePDF unavailable
34mod04lec34 - Differentiation and integration of power seriesPDF unavailable
35mod04lec35 - Isolated SingularitiesPDF unavailable
36mod04lec36 - ResiduesPDF unavailable
37mod04lec37 - Residue TheoremPDF unavailable
38mod04lec38 - Evaluation of integrals-IPDF unavailable
39mod04lec39 - Evaluation of integrals-IIPDF unavailable
40mod04lec40 - Analytic ContinuationPDF unavailable
41mod05lec41 - Introduction of orthogonal polynomialsPDF unavailable
42mod05lec42 - How to construct orthogonal polynomialsPDF unavailable
43mod05lec43 - The weight functionPDF unavailable
44mod05lec44 - Recursion relationsPDF unavailable
45mod05lec45 - Differential equation satisfied by the orthogonal polynomialsPDF unavailable
46mod05lec46 - Hermite polynomialsPDF unavailable
47mod05lec47 - Properties of Hemite polynomialsPDF unavailable
48mod05lec48 - Legendre polynomialsPDF unavailable
49mod05lec49 - Legendre polynomials: recurrence relationPDF unavailable
50mod06lec50 - Differential equation corresponding to Legendre polynomialsPDF unavailable
51mod06lec51 - The generating function corresponding to Legendre polynomialsPDF unavailable
52mod06lec52 - Laguerre PolynomialsPDF unavailable
53mod06lec53 - Laguerre Polynomials: recurrence relationPDF unavailable
54mod06lec54 - Laguerre polynomials: differential equationPDF unavailable
55mod06lec55 - Laguerre polynomials: generating functionPDF unavailable
56mod06lec56 - Bessel functions: series definationPDF unavailable
57mod06lec57 - Bessel functions: recurrence relationsPDF unavailable
58mod06lec58 - Bessel functions: differential equationPDF unavailable
59mod06lec59 - Bessel functions of integral order: generating functionPDF unavailable
60mod06lec60 - Bessel function: orthogonalityPDF unavailable
61mod07lec61 - Classification of Second Order PDEsPDF unavailable
62mod07lec62 - Canonical Forms for Hyperbolic PDEsPDF unavailable
63mod07lec63 - Canonical Forms for Parabolic PDEsPDF unavailable
64mod07lec64 - Canonical Forms for Elliptic PDEsPDF unavailable
65mod07lec65 - Tha Laplace EquationPDF unavailable
66mod07lec66 - The Laplace Equation: Separation of VariablesPDF unavailable
67mod07lec67 - The Laplace Equation: Dirichlet and Neumann boundary conditionsPDF unavailable
68mod07lec68 - The Laplace Equation in Cartesian coordinatesPDF unavailable
69mod07lec69 - The Laplace Equation for a 3-D rectangular boxPDF unavailable
70mod08lec70 - The Laplace Equation in spherical coordinatesPDF unavailable
71mod08lec71 - The Laplace Equation in Spherical Coordinates: SolutionPDF unavailable
72mod08lec72 - The Laplace Equation in Spherical Coordinates: illustrative examplesPDF unavailable
73mod08lec73 - The Poisson's Equation: Green's function solutionPDF unavailable
74mod08lec74 - The heat equation: a heuristic discussionPDF unavailable
75mod08lec75 - From the random walk to the diffusion equationPDF unavailable
76mod08lec76 - Solution of the Diffusion equationPDF unavailable
77mod08lec77 - The Diffusion equation with Dirichlet and Neumann boundary conditionsPDF unavailable
78mod08lec78 - The Heat equation: illustrative examplesPDF unavailable
79mod08lec79 - The Wave equation: Method of characteristicsPDF unavailable
80mod08lec80 - The Wave equation: Separation of variablesPDF unavailable


Sl.No Language Book link
1EnglishNot Available
2BengaliNot Available
3GujaratiNot Available
4HindiNot Available
5KannadaNot Available
6MalayalamNot Available
7MarathiNot Available
8TamilNot Available
9TeluguNot Available