Modules / Lectures
Module NameDownload
noc20_ma17_assigment_1noc20_ma17_assigment_1
noc20_ma17_assigment_10noc20_ma17_assigment_10
noc20_ma17_assigment_11noc20_ma17_assigment_11
noc20_ma17_assigment_12noc20_ma17_assigment_12
noc20_ma17_assigment_13noc20_ma17_assigment_13
noc20_ma17_assigment_2noc20_ma17_assigment_2
noc20_ma17_assigment_3noc20_ma17_assigment_3
noc20_ma17_assigment_4noc20_ma17_assigment_4
noc20_ma17_assigment_5noc20_ma17_assigment_5
noc20_ma17_assigment_6noc20_ma17_assigment_6
noc20_ma17_assigment_7noc20_ma17_assigment_7
noc20_ma17_assigment_8noc20_ma17_assigment_8
noc20_ma17_assigment_9noc20_ma17_assigment_9


Sl.No Chapter Name MP4 Download
1Lecture 01: Vector FunctionsDownload
2Lecture 02: Vector and Scalar FieldsDownload
3Lecture 03: Divergence and Curl of a Vector FieldDownload
4Lecture 04: Line IntegralsDownload
5Lecture 05: Conservative Vector FieldDownload
6Lecture 06: Green’s TheoremDownload
7Lecture 07: Surface Integral – IDownload
8Lecture 08: Surface Integral – IIDownload
9Lecture 09: Stokes’ TheoremDownload
10Lecture 10: Divergence TheoremDownload
11Lecture 11: Complex Numbers and FunctionsDownload
12Lecture 12: Differentiability of Complex FunctionsDownload
13Lecture 13: Analytic FunctionsDownload
14Lecture 14: Line IntegralDownload
15Lecture 15: Cauchy Integral TheoremDownload
16Lecture 16 : Cauchy Integral FormulaDownload
17Lecture 17 : Taylor’s SeriesDownload
18Lecture 18 : Laurent’s SeriesDownload
19Lecture 19 : SingularitiesDownload
20Lecture 20 : ResidueDownload
21Lecture 21 : Iterative Methods for Solving System of Linear EquationsDownload
22Lecture 22 : Iterative Methods for Solving System of Linear Equations (Cont.)Download
23Lecture 23 : Iterative Methods for Solving System of Linear Equations (Cont.)Download
24Lecture 24 : Roots of Algebraic and Transcendental EquationsDownload
25Lecture 25 : Roots of Algebraic and Transcendental Equations (Cont.)Download
26Lecture 26: Polynomial InterpolationDownload
27Lecture 27: Polynomial Interpolation (Cont.)Download
28Lecture 28: Polynomial Interpolation (Cont.)Download
29Lecture 29: "Polynomial Interpolation (Cont.)"Download
30Lecture 30: Numerical IntegrationDownload
31Lecture 31: "Trigonometric Polynomials and Series"Download
32Lecture 32: Derivation of Fourier SeriesDownload
33Lecture 33: Fourier Series -EvaluationDownload
34Lecture 34: Convergence of Fourier Series -IDownload
35Lecture 35: "Convergence of Fourier Series - II"Download
36Lecture 36: "Fourier Series for Even and Odd Functions"Download
37Lecture 37: Half Range Fourier ExpansionsDownload
38Lecture 38: "Differentiation and Integration of Fourier Series"Download
39Lecture 39: Bessel’s Inequality and Parseval’s IdentityDownload
40Lecture 40: Complex Form of Fourier SeriesDownload
41Lecture 41: "Fourier Integral Representation of a Function"Download
42Lecture 42: "Fourier Sine and Cosine Integrals"Download
43Lecture 43: " Fourier Cosine and Sine Transform"Download
44Lecture 44: Fourier TransformDownload
45Lecture 45: Properties of Fourier TransformDownload
46Lecture 46: "Evaluation of Fourier Transform (Part - 1)"Download
47Lecture 47: "Evaluation of Fourier Transform (Part - 2)"Download
48Lecture 48: " Introduction to Partial Differential Equations"Download
49Lecture 49 : Applications of Fourier Transform to PDEs (Part -1)Download
50Lecture 50 : Applications of Fourier Transform to PDEs (Part -2)Download
51Lecture 51 : Laplace Transform of Some Elementary FunctionsDownload
52Lecture 52 : Existence of Laplace TransformDownload
53Lecture 53 : Inverse Laplace TransformDownload
54Lecture 54 : Properties of Laplace TransformDownload
55Lecture 55 : Properties of Laplace Transform (Cont.)Download
56Lecture 56 : Properties of Laplace Transform (Cont.)Download
57Lecture 57 : Laplace Transform of Special FunctionsDownload
58Lecture 58 : Laplace Transform of Special Functions (Cont.)Download
59Lecture 59 : Applications of Laplace TransformDownload
60Lecture 60 : Applications of Laplace Transform (Cont.)Download

Sl.No Chapter Name English
1Lecture 01: Vector FunctionsDownload
Verified
2Lecture 02: Vector and Scalar FieldsDownload
Verified
3Lecture 03: Divergence and Curl of a Vector FieldDownload
Verified
4Lecture 04: Line IntegralsDownload
Verified
5Lecture 05: Conservative Vector FieldDownload
Verified
6Lecture 06: Green’s TheoremDownload
Verified
7Lecture 07: Surface Integral – IDownload
Verified
8Lecture 08: Surface Integral – IIDownload
Verified
9Lecture 09: Stokes’ TheoremDownload
Verified
10Lecture 10: Divergence TheoremDownload
Verified
11Lecture 11: Complex Numbers and FunctionsDownload
Verified
12Lecture 12: Differentiability of Complex FunctionsDownload
Verified
13Lecture 13: Analytic FunctionsDownload
Verified
14Lecture 14: Line IntegralDownload
Verified
15Lecture 15: Cauchy Integral TheoremDownload
Verified
16Lecture 16 : Cauchy Integral FormulaDownload
Verified
17Lecture 17 : Taylor’s SeriesDownload
Verified
18Lecture 18 : Laurent’s SeriesDownload
Verified
19Lecture 19 : SingularitiesDownload
Verified
20Lecture 20 : ResidueDownload
Verified
21Lecture 21 : Iterative Methods for Solving System of Linear EquationsDownload
Verified
22Lecture 22 : Iterative Methods for Solving System of Linear Equations (Cont.)Download
Verified
23Lecture 23 : Iterative Methods for Solving System of Linear Equations (Cont.)Download
Verified
24Lecture 24 : Roots of Algebraic and Transcendental EquationsDownload
Verified
25Lecture 25 : Roots of Algebraic and Transcendental Equations (Cont.)Download
Verified
26Lecture 26: Polynomial InterpolationDownload
Verified
27Lecture 27: Polynomial Interpolation (Cont.)Download
Verified
28Lecture 28: Polynomial Interpolation (Cont.)Download
Verified
29Lecture 29: "Polynomial Interpolation (Cont.)"Download
Verified
30Lecture 30: Numerical IntegrationDownload
Verified
31Lecture 31: "Trigonometric Polynomials and Series"Download
Verified
32Lecture 32: Derivation of Fourier SeriesDownload
Verified
33Lecture 33: Fourier Series -EvaluationDownload
Verified
34Lecture 34: Convergence of Fourier Series -IDownload
Verified
35Lecture 35: "Convergence of Fourier Series - II"Download
Verified
36Lecture 36: "Fourier Series for Even and Odd Functions"Download
Verified
37Lecture 37: Half Range Fourier ExpansionsDownload
Verified
38Lecture 38: "Differentiation and Integration of Fourier Series"Download
Verified
39Lecture 39: Bessel’s Inequality and Parseval’s IdentityDownload
Verified
40Lecture 40: Complex Form of Fourier SeriesDownload
Verified
41Lecture 41: "Fourier Integral Representation of a Function"Download
Verified
42Lecture 42: "Fourier Sine and Cosine Integrals"Download
Verified
43Lecture 43: " Fourier Cosine and Sine Transform"Download
Verified
44Lecture 44: Fourier TransformDownload
Verified
45Lecture 45: Properties of Fourier TransformDownload
Verified
46Lecture 46: "Evaluation of Fourier Transform (Part - 1)"Download
Verified
47Lecture 47: "Evaluation of Fourier Transform (Part - 2)"Download
Verified
48Lecture 48: " Introduction to Partial Differential Equations"Download
Verified
49Lecture 49 : Applications of Fourier Transform to PDEs (Part -1)Download
Verified
50Lecture 50 : Applications of Fourier Transform to PDEs (Part -2)Download
Verified
51Lecture 51 : Laplace Transform of Some Elementary FunctionsDownload
Verified
52Lecture 52 : Existence of Laplace TransformDownload
Verified
53Lecture 53 : Inverse Laplace TransformDownload
Verified
54Lecture 54 : Properties of Laplace TransformDownload
Verified
55Lecture 55 : Properties of Laplace Transform (Cont.)Download
Verified
56Lecture 56 : Properties of Laplace Transform (Cont.)Download
Verified
57Lecture 57 : Laplace Transform of Special FunctionsDownload
Verified
58Lecture 58 : Laplace Transform of Special Functions (Cont.)Download
Verified
59Lecture 59 : Applications of Laplace TransformDownload
Verified
60Lecture 60 : Applications of Laplace Transform (Cont.)Download
Verified


Sl.No Language Book link
1EnglishNot Available
2BengaliNot Available
3GujaratiNot Available
4HindiNot Available
5KannadaNot Available
6MalayalamNot Available
7MarathiNot Available
8TamilNot Available
9TeluguNot Available