Modules / Lectures
Module NameDownload
noc20_ma07_assigment_1noc20_ma07_assigment_1
noc20_ma07_assigment_10noc20_ma07_assigment_10
noc20_ma07_assigment_11noc20_ma07_assigment_11
noc20_ma07_assigment_12noc20_ma07_assigment_12
noc20_ma07_assigment_13noc20_ma07_assigment_13
noc20_ma07_assigment_2noc20_ma07_assigment_2
noc20_ma07_assigment_3noc20_ma07_assigment_3
noc20_ma07_assigment_4noc20_ma07_assigment_4
noc20_ma07_assigment_5noc20_ma07_assigment_5
noc20_ma07_assigment_6noc20_ma07_assigment_6
noc20_ma07_assigment_7noc20_ma07_assigment_7
noc20_ma07_assigment_8noc20_ma07_assigment_8
noc20_ma07_assigment_9noc20_ma07_assigment_9


Sl.No Chapter Name MP4 Download
1Lecture 1 : Partition, Riemann intergrability and One exampleDownload
2Lecture 2 : Partition, Riemann intergrability and One example (Contd.)Download
3Lecture 3 : Condition of integrabilityDownload
4Lecture 4 : Theorems on Riemann integrationsDownload
5Lecture 5 : ExamplesDownload
6Lecture 06: Examples (Contd.)Download
7Lecture 07: Reduction formulaDownload
8Lecture 08: Reduction formula (Contd.)Download
9Lecture 09: Improper IntegralDownload
10Lecture 10: Improper Integral (Contd.)Download
11Lecture 11 : Improper Integral (Contd.)Download
12Lecture 12 : Improper Integral (Contd.)Download
13Lecture 13 : Introduction to Beta and Gamma FunctionDownload
14Lecture 14 : Beta and Gamma FunctionDownload
15Lecture 15 :Differentiation under Integral SignDownload
16Lecture 16 : Differentiation under Integral Sign (Contd.)Download
17Lecture 17 : Double IntegralDownload
18Lecture 18 : Double Integral over a Region EDownload
19Lecture 19 : Examples of Integral over a Region EDownload
20Lecture 20 : Change of variables in a Double IntegralDownload
21Lecture 21: Change of order of IntegrationDownload
22 Lecture 22: Triple IntegralDownload
23Lecture 23: Triple Integral (Contd.)Download
24Lecture 24: Area of Plane RegionDownload
25Lecture 25: Area of Plane Region (Contd.)Download
26Lecture 26 :RectificationDownload
27Lecture 27 : Rectification (Contd.)Download
28Lecture 28 : Surface IntegralDownload
29Lecture 29 : Surface Integral (Contd.)Download
30Lecture 30 : Surface Integral (Contd.)Download
31Lecture 31: Volume Integral, Gauss Divergence TheoremDownload
32Lecture 32: Vector CalculusDownload
33Lecture 33: Limit, Continuity, DifferentiabilityDownload
34Lecture 34: Successive DifferentiationDownload
35Lecture 35: Integration of Vector FunctionDownload
36Lecture 36: Gradient of a FunctionDownload
37Lecture 37: Divergence & CurlDownload
38Lecture 38: Divergence & Curl ExamplesDownload
39Lecture 39: Divergence & Curl important IdentitiesDownload
40Lecture 40: Level Surface Relevant TheoremsDownload
41Lecture 41: Directional Derivative (Concept & Few Results)Download
42Lecture 42: Directional Derivative (Concept & Few Results) (Contd.)Download
43Lecture 43: Directional Derivatives, Level SurfacesDownload
44Lecture 44: Application to MechanicsDownload
45Lecture 45: Equation of Tangent, Unit Tangent VectorDownload
46Lecture 46: Unit Normal, Unit binormal, Equation of Normal PlaneDownload
47Lecture 47: Introduction and Derivation of Serret-Frenet Formula, few resultsDownload
48Lecture 48: Example on binormal, normal tangent, Serret-Frenet FormulaDownload
49Lecture 49: Osculating Plane, Rectifying plane, Normal planeDownload
50Lecture 50: Application to Mechanics, Velocity, speed , accelerationDownload
51Lecture 51: Angular Momentum, Newton's LawDownload
52Lecture 52: Example on derivation of equation of motion of particleDownload
53Lecture 53: Line IntegralDownload
54Lecture 54: Surface integralDownload
55Lecture 55: Surface integral (Contd.)Download
56Lecture 56: Green's Theorem & ExampleDownload
57Lecture 57: Volume integral, Gauss theoremDownload
58Lecture 58: Gauss divergence theoremDownload
59Lecture 59: Stoke's TheoremDownload
60Lecture 60: Overview of Course Download

Sl.No Chapter Name English
1Lecture 1 : Partition, Riemann intergrability and One exampleDownload
Verified
2Lecture 2 : Partition, Riemann intergrability and One example (Contd.)Download
Verified
3Lecture 3 : Condition of integrabilityDownload
Verified
4Lecture 4 : Theorems on Riemann integrationsDownload
Verified
5Lecture 5 : ExamplesDownload
Verified
6Lecture 06: Examples (Contd.)Download
Verified
7Lecture 07: Reduction formulaDownload
Verified
8Lecture 08: Reduction formula (Contd.)Download
Verified
9Lecture 09: Improper IntegralDownload
Verified
10Lecture 10: Improper Integral (Contd.)Download
Verified
11Lecture 11 : Improper Integral (Contd.)Download
Verified
12Lecture 12 : Improper Integral (Contd.)Download
Verified
13Lecture 13 : Introduction to Beta and Gamma FunctionDownload
Verified
14Lecture 14 : Beta and Gamma FunctionDownload
Verified
15Lecture 15 :Differentiation under Integral SignDownload
Verified
16Lecture 16 : Differentiation under Integral Sign (Contd.)Download
Verified
17Lecture 17 : Double IntegralDownload
Verified
18Lecture 18 : Double Integral over a Region EDownload
Verified
19Lecture 19 : Examples of Integral over a Region EDownload
Verified
20Lecture 20 : Change of variables in a Double IntegralDownload
Verified
21Lecture 21: Change of order of IntegrationDownload
Verified
22 Lecture 22: Triple IntegralDownload
Verified
23Lecture 23: Triple Integral (Contd.)Download
Verified
24Lecture 24: Area of Plane RegionDownload
Verified
25Lecture 25: Area of Plane Region (Contd.)Download
Verified
26Lecture 26 :RectificationDownload
Verified
27Lecture 27 : Rectification (Contd.)Download
Verified
28Lecture 28 : Surface IntegralDownload
Verified
29Lecture 29 : Surface Integral (Contd.)Download
Verified
30Lecture 30 : Surface Integral (Contd.)Download
Verified
31Lecture 31: Volume Integral, Gauss Divergence TheoremDownload
Verified
32Lecture 32: Vector CalculusDownload
Verified
33Lecture 33: Limit, Continuity, DifferentiabilityDownload
Verified
34Lecture 34: Successive DifferentiationDownload
Verified
35Lecture 35: Integration of Vector FunctionDownload
Verified
36Lecture 36: Gradient of a FunctionDownload
Verified
37Lecture 37: Divergence & CurlDownload
Verified
38Lecture 38: Divergence & Curl ExamplesDownload
Verified
39Lecture 39: Divergence & Curl important IdentitiesDownload
Verified
40Lecture 40: Level Surface Relevant TheoremsDownload
Verified
41Lecture 41: Directional Derivative (Concept & Few Results)Download
Verified
42Lecture 42: Directional Derivative (Concept & Few Results) (Contd.)Download
Verified
43Lecture 43: Directional Derivatives, Level SurfacesDownload
Verified
44Lecture 44: Application to MechanicsDownload
Verified
45Lecture 45: Equation of Tangent, Unit Tangent VectorDownload
Verified
46Lecture 46: Unit Normal, Unit binormal, Equation of Normal PlaneDownload
Verified
47Lecture 47: Introduction and Derivation of Serret-Frenet Formula, few resultsDownload
Verified
48Lecture 48: Example on binormal, normal tangent, Serret-Frenet FormulaDownload
Verified
49Lecture 49: Osculating Plane, Rectifying plane, Normal planeDownload
Verified
50Lecture 50: Application to Mechanics, Velocity, speed , accelerationDownload
Verified
51Lecture 51: Angular Momentum, Newton's LawDownload
Verified
52Lecture 52: Example on derivation of equation of motion of particleDownload
Verified
53Lecture 53: Line IntegralDownload
Verified
54Lecture 54: Surface integralDownload
Verified
55Lecture 55: Surface integral (Contd.)Download
Verified
56Lecture 56: Green's Theorem & ExampleDownload
Verified
57Lecture 57: Volume integral, Gauss theoremDownload
Verified
58Lecture 58: Gauss divergence theoremDownload
Verified
59Lecture 59: Stoke's TheoremDownload
Verified
60Lecture 60: Overview of Course Download
Verified


Sl.No Language Book link
1EnglishNot Available
2BengaliNot Available
3GujaratiNot Available
4HindiNot Available
5KannadaNot Available
6MalayalamNot Available
7MarathiNot Available
8TamilNot Available
9TeluguNot Available