Modules / Lectures

Video Transcript:

Auto Scroll Hide
Module NameDownload
noc19_ma17-assessmentid-110noc19_ma17-assessmentid-110
noc19_ma17-assessmentid-111noc19_ma17-assessmentid-111
noc19_ma17-assessmentid-113noc19_ma17-assessmentid-113
noc19_ma17-assessmentid-121noc19_ma17-assessmentid-121
noc19_ma17-assessmentid-124noc19_ma17-assessmentid-124
noc19_ma17-assessmentid-129noc19_ma17-assessmentid-129
noc19_ma17-assessmentid-136noc19_ma17-assessmentid-136
noc19_ma17-assessmentid-137noc19_ma17-assessmentid-137
noc19_ma17-assessmentid-139noc19_ma17-assessmentid-139
noc19_ma17-assessmentid-6noc19_ma17-assessmentid-6
noc19_ma17-assessmentid-95noc19_ma17-assessmentid-95


Sl.No Chapter Name MP4 Download
1Lecture 1 : Historical PerspectivesDownload
2Lecture 2 : Examples of FieldsDownload
3Lecture 3 : Polynomials and Basic propertiesDownload
4Lecture 4 : Polynomial RingsDownload
5Lecture 5 : Unit and Unit GroupsDownload
6Lecture 6 : Division with remainder and prime factorizationDownload
7Lecture 7 : Zeroes of PolynomialsDownload
8Lecture 8 : Polynomial functionsDownload
9Lecture 9 : Algebraically closed Fields and statement of FTADownload
10Lecture 10 : Gauss’s Theorem(Uniqueness of factorization)Download
11Lecture 11 : Digression on Rings homomorphism, AlgebrasDownload
12Lecture 12 : Kernel of homomorphisms and ideals in K[X],ZDownload
13Lecture 13 : Algebraic elementsDownload
14Lecture 14 : ExamplesDownload
15Lecture 15 : Minimal PolynomialsDownload
16Lecture 16 : Characterization of Algebraic elementsDownload
17Lecture 17 : Theorem of KroneckerDownload
18Lecture 18 : ExamplesDownload
19Lecture 19 : Digression on GroupsDownload
20Lecture 20 : Some examples and Characteristic of a RingDownload
21Lecture 21 : Finite subGroups of the Unit Group of a FieldDownload
22Lecture 22 : Construction of Finite FieldsDownload
23Lecture 23 : Digression on Group action-IDownload
24Lecture 24 : Automorphism Groups of a Field ExtensionDownload
25Lecture 25 : Dedekind-Artin TheoremDownload
26Lecture 26 : Galois ExtensionDownload
27Lecture 27 : Examples of Galois extensionDownload
28Lecture 28 : Examples of Automorphism GroupsDownload
29Lecture 29 : Digression on Linear AlgebraDownload
30Lecture 30 : Minimal and Characteristic Polynomials, Norms, Trace of elementsDownload
31Lecture 31 : Primitive Element Theorem for Galois ExtensionDownload
32Lecture 32 : Fundamental Theorem of Galois TheoryDownload
33Lecture 33 : Fundamental Theorem of Galois Theory(Contd)Download
34Lecture 34 : Cyclotomic extensionsDownload
35Lecture 35 : Cyclotomic PolynomialsDownload
36Lecture 36 : Irreducibility of Cyclotomic Polynomials over QDownload
37Lecture 37 : Reducibility of Cyclotomic Polynomials over Finite FieldsDownload
38Lecture 38 : Galois Group of Cyclotomic PolynomialsDownload
39Lecture 39 : Extension over a fixed Field of a finite subGroup is Galois ExtensionDownload
40Lecture 40 : Digression on Group action IIDownload
41Lecture 41 : Correspondence of Normal SubGroups and Galois sub-extensionsDownload
42Lecture 42 : Correspondence of Normal SubGroups and Galois sub-extensions(Contd)Download
43Lecture 43 : Inverse Galois problem for Abelian GroupsDownload
44Lecture 44 : Elementary Symmetric PolynomialsDownload
45Lecture 45 : Fundamental Theorem on Symmetric PolynomialsDownload
46Lecture 46 : Gal (K[X1,X2,…,Xn]/K[S1,S2,...,Sn])Download
47Lecture 47 : Digression on Symmetric and Alternating GroupDownload
48Lecture 48 : Discriminant of a PolynomialDownload
49Lecture 49 : Zeroes and EmbeddingsDownload
50Lecture 50 : Normal ExtensionsDownload
51Lecture 51 : Existence of Algebraic ClosureDownload
52Lecture 52 : Uniqueness of Algebraic ClosureDownload
53Lecture 53 : Proof of The Fundamental Theorem of AlgebraDownload
54Lecture 54 : Galois Group of a PolynomialDownload
55Lecture 55 : Perfect FieldsDownload
56Lecture 56 : EmbeddingsDownload
57Lecture 57 : Characterization of finite Separable extensionDownload
58Lecture 58 : Primitive Element TheoremDownload
59Lecture 59 : Equivalence of Galois extensions and Normal-Separable extensionsDownload
60Lecture 60 : Operation of Galois Group of Polynomial on the set of zeroes.Download
61Lecture 61 : DiscriminantsDownload
62Lecture 62 : Examples for further studyDownload

Sl.No Chapter Name English
1Lecture 1 : Historical PerspectivesDownload
Verified
2Lecture 2 : Examples of FieldsDownload
Verified
3Lecture 3 : Polynomials and Basic propertiesDownload
Verified
4Lecture 4 : Polynomial RingsDownload
Verified
5Lecture 5 : Unit and Unit GroupsDownload
Verified
6Lecture 6 : Division with remainder and prime factorizationDownload
Verified
7Lecture 7 : Zeroes of PolynomialsDownload
Verified
8Lecture 8 : Polynomial functionsDownload
Verified
9Lecture 9 : Algebraically closed Fields and statement of FTADownload
Verified
10Lecture 10 : Gauss’s Theorem(Uniqueness of factorization)Download
Verified
11Lecture 11 : Digression on Rings homomorphism, AlgebrasDownload
Verified
12Lecture 12 : Kernel of homomorphisms and ideals in K[X],ZDownload
Verified
13Lecture 13 : Algebraic elementsDownload
Verified
14Lecture 14 : ExamplesDownload
Verified
15Lecture 15 : Minimal PolynomialsDownload
Verified
16Lecture 16 : Characterization of Algebraic elementsDownload
Verified
17Lecture 17 : Theorem of KroneckerDownload
Verified
18Lecture 18 : ExamplesDownload
Verified
19Lecture 19 : Digression on GroupsDownload
Verified
20Lecture 20 : Some examples and Characteristic of a RingDownload
Verified
21Lecture 21 : Finite subGroups of the Unit Group of a FieldDownload
Verified
22Lecture 22 : Construction of Finite FieldsDownload
Verified
23Lecture 23 : Digression on Group action-IDownload
Verified
24Lecture 24 : Automorphism Groups of a Field ExtensionDownload
Verified
25Lecture 25 : Dedekind-Artin TheoremDownload
Verified
26Lecture 26 : Galois ExtensionDownload
Verified
27Lecture 27 : Examples of Galois extensionDownload
Verified
28Lecture 28 : Examples of Automorphism GroupsDownload
Verified
29Lecture 29 : Digression on Linear AlgebraDownload
Verified
30Lecture 30 : Minimal and Characteristic Polynomials, Norms, Trace of elementsDownload
Verified
31Lecture 31 : Primitive Element Theorem for Galois ExtensionDownload
Verified
32Lecture 32 : Fundamental Theorem of Galois TheoryDownload
Verified
33Lecture 33 : Fundamental Theorem of Galois Theory(Contd)Download
Verified
34Lecture 34 : Cyclotomic extensionsDownload
Verified
35Lecture 35 : Cyclotomic PolynomialsDownload
Verified
36Lecture 36 : Irreducibility of Cyclotomic Polynomials over QDownload
Verified
37Lecture 37 : Reducibility of Cyclotomic Polynomials over Finite FieldsDownload
Verified
38Lecture 38 : Galois Group of Cyclotomic PolynomialsDownload
Verified
39Lecture 39 : Extension over a fixed Field of a finite subGroup is Galois ExtensionDownload
Verified
40Lecture 40 : Digression on Group action IIDownload
Verified
41Lecture 41 : Correspondence of Normal SubGroups and Galois sub-extensionsDownload
Verified
42Lecture 42 : Correspondence of Normal SubGroups and Galois sub-extensions(Contd)Download
Verified
43Lecture 43 : Inverse Galois problem for Abelian GroupsDownload
Verified
44Lecture 44 : Elementary Symmetric PolynomialsDownload
Verified
45Lecture 45 : Fundamental Theorem on Symmetric PolynomialsDownload
Verified
46Lecture 46 : Gal (K[X1,X2,…,Xn]/K[S1,S2,...,Sn])Download
Verified
47Lecture 47 : Digression on Symmetric and Alternating GroupDownload
Verified
48Lecture 48 : Discriminant of a PolynomialDownload
Verified
49Lecture 49 : Zeroes and EmbeddingsDownload
Verified
50Lecture 50 : Normal ExtensionsDownload
Verified
51Lecture 51 : Existence of Algebraic ClosureDownload
Verified
52Lecture 52 : Uniqueness of Algebraic ClosureDownload
Verified
53Lecture 53 : Proof of The Fundamental Theorem of AlgebraDownload
Verified
54Lecture 54 : Galois Group of a PolynomialDownload
Verified
55Lecture 55 : Perfect FieldsDownload
Verified
56Lecture 56 : EmbeddingsDownload
Verified
57Lecture 57 : Characterization of finite Separable extensionDownload
Verified
58Lecture 58 : Primitive Element TheoremDownload
Verified
59Lecture 59 : Equivalence of Galois extensions and Normal-Separable extensionsDownload
Verified
60Lecture 60 : Operation of Galois Group of Polynomial on the set of zeroes.Download
Verified
61Lecture 61 : DiscriminantsDownload
Verified
62Lecture 62 : Examples for further studyDownload
Verified


Sl.No Language Book link
1EnglishNot Available
2BengaliNot Available
3GujaratiNot Available
4HindiNot Available
5KannadaNot Available
6MalayalamNot Available
7MarathiNot Available
8TamilNot Available
9TeluguNot Available