Modules / Lectures
Module NameDownload
noc19_ma16-assessmentid-106noc19_ma16-assessmentid-106
noc19_ma16-assessmentid-110noc19_ma16-assessmentid-110
noc19_ma16-assessmentid-114noc19_ma16-assessmentid-114
noc19_ma16-assessmentid-122noc19_ma16-assessmentid-122
noc19_ma16-assessmentid-123noc19_ma16-assessmentid-123
noc19_ma16-assessmentid-126noc19_ma16-assessmentid-126
noc19_ma16-assessmentid-8noc19_ma16-assessmentid-8
noc19_ma16-assessmentid-81noc19_ma16-assessmentid-81
noc19_ma16-assessmentid-96noc19_ma16-assessmentid-96
noc19_ma16-assessmentid-97noc19_ma16-assessmentid-97
noc19_ma16-assessmentid-99noc19_ma16-assessmentid-99


Sl.No Chapter Name MP4 Download
1Lecture 1 : Zariski Topology and K-SpectrumDownload
2Lecture 2 : Algebraic Varieties and Classical NullstelensatzDownload
3Lecture 3 : Motivation for Krulls DimensionDownload
4Lecture 4 : Chevalleys dimensionDownload
5Lecture 5 : Associated Prime Ideals of a ModuleDownload
6Lecture 6 : Support of a ModuleDownload
7Lecture 7 : Primary DecompositionDownload
8Lecture 8 : Primary Decomposition(Contd)Download
9Lecture 9 : Uniqueness of Primary DecompositionDownload
10Lecture 10 : Modules of Finite LengthDownload
11Lecture 11 : Modules of Finite Length(Contd)Download
12Lecture 12 : Introduction to Krull’s DimensionDownload
13Lecture 13 : Noether Normalization Lemma(Classical Version)Download
14Lecture 14 : Consequences of Noether Normalization LemmaDownload
15Lecture 15 : Nil Radical and Jacobson Radical of Finite type Algebras over a Field and digression of Integral ExtensionDownload
16Lecture 16 : Nagata’s version of NNLDownload
17Lecture 17 : Dimensions of Polynomial ring over Noetherian ringsDownload
18Lecture 18 : Dimension of Polynomial Algebra over arbitrary RingsDownload
19Lecture 19 : Dimension InequalitiesDownload
20Lecture 20 : Hilbert’s NullstelensatzDownload
21Lecture 21 : Computational rules for Poincaré SeriesDownload
22Lecture 22 : Graded Rings, Modules and Poincaré SeriesDownload
23Lecture 23 : Hilbert-Samuel PolynomialsDownload
24Lecture 24 : Hilbert-Samuel Polynomials(Contd)Download
25Lecture 25 : Numerical Function of polynomial typeDownload
26Lecture 26 : Hilbert-Samuel Polynomial of a Local ringDownload
27Lecture 27 : Filtration on a ModuleDownload
28Lecture 28 : Artin-Rees LemmaDownload
29Lecture 29 : Dimension TheoremDownload
30Lecture 30 : Dimension Theorem(Continued)Download
31Lecture 31 : Consequences of Dimension TheoremDownload
32Lecture 32 : Generalized Krull’s Principal Ideal TheoremDownload
33Lecture 33 : Second proof of Krull’s Principal Ideal TheoremDownload
34Lecture 34 : The Spec FunctorDownload
35Lecture 35 : Prime ideals in Polynomial ringsDownload
36Lecture 36 : Characterization of Equidimensional Affine AlgebraDownload
37Lecture 37 : Connection between Regular local rings and associated graded ringsDownload
38Lecture 38 : Statement of the Jacobian Criterion for RegularityDownload
39Lecture 39 : Hilbert function for Affine AlgebraDownload
40Lecture 40 : Hilbert Serre TheoremDownload
41Lecture 41 : Jacobian Matrix and its RankDownload
42Lecture 42 : Jacobian Matrix and its Rank(Contd)Download
43Lecture 43 : Proof of Jacobian CritrerionDownload
44Lecture 44 : Proof of Jacobian Critrerion(Contd)Download
45Lecture 45 : Preparation for Homological DimensionDownload
46Lecture 46 : Complexes of Modules and HomologyDownload
47Lecture 47 : Projective ModulesDownload
48Lecture 48 : Homological Dimension and Projective moduleDownload
49Lecture 49 : Global DimensionDownload
50Lecture 50 : Homological characterization of Regular Local Ring(RLR)Download
51Lecture 51 : Homological characterization of Regular Local Ring(Contd)Download
52Lecture 52 : Homological Characterization of Regular Local Rings(Contd)Download
53Lecture 53 : Regular Local Rings are UFDDownload
54Lecture 54 : RLR-Prime ideals of height 1Download
55Lecture 55 : Discrete Valuation RingDownload
56Lecture 56 : Discrete Valuation Ring(Contd)Download
57Lecture 57 : Dedekind DomainsDownload
58Lecture 58 : Fractionary Ideals and Dedekind DomainsDownload
59Lecture 59 : Characterization of Dedekind DomainDownload
60Lecture 60 : Dedekind Domains and prime factorization of idealsDownload

Sl.No Chapter Name English
1Lecture 1 : Zariski Topology and K-SpectrumDownload
Verified
2Lecture 2 : Algebraic Varieties and Classical NullstelensatzDownload
Verified
3Lecture 3 : Motivation for Krulls DimensionDownload
Verified
4Lecture 4 : Chevalleys dimensionDownload
Verified
5Lecture 5 : Associated Prime Ideals of a ModuleDownload
Verified
6Lecture 6 : Support of a ModuleDownload
Verified
7Lecture 7 : Primary DecompositionDownload
Verified
8Lecture 8 : Primary Decomposition(Contd)Download
Verified
9Lecture 9 : Uniqueness of Primary DecompositionDownload
Verified
10Lecture 10 : Modules of Finite LengthDownload
Verified
11Lecture 11 : Modules of Finite Length(Contd)Download
Verified
12Lecture 12 : Introduction to Krull’s DimensionDownload
Verified
13Lecture 13 : Noether Normalization Lemma(Classical Version)Download
Verified
14Lecture 14 : Consequences of Noether Normalization LemmaDownload
Verified
15Lecture 15 : Nil Radical and Jacobson Radical of Finite type Algebras over a Field and digression of Integral ExtensionDownload
Verified
16Lecture 16 : Nagata’s version of NNLDownload
Verified
17Lecture 17 : Dimensions of Polynomial ring over Noetherian ringsDownload
Verified
18Lecture 18 : Dimension of Polynomial Algebra over arbitrary RingsDownload
Verified
19Lecture 19 : Dimension InequalitiesDownload
Verified
20Lecture 20 : Hilbert’s NullstelensatzDownload
Verified
21Lecture 21 : Computational rules for Poincaré SeriesDownload
Verified
22Lecture 22 : Graded Rings, Modules and Poincaré SeriesDownload
Verified
23Lecture 23 : Hilbert-Samuel PolynomialsDownload
Verified
24Lecture 24 : Hilbert-Samuel Polynomials(Contd)Download
Verified
25Lecture 25 : Numerical Function of polynomial typeDownload
Verified
26Lecture 26 : Hilbert-Samuel Polynomial of a Local ringDownload
Verified
27Lecture 27 : Filtration on a ModuleDownload
Verified
28Lecture 28 : Artin-Rees LemmaDownload
Verified
29Lecture 29 : Dimension TheoremDownload
Verified
30Lecture 30 : Dimension Theorem(Continued)Download
Verified
31Lecture 31 : Consequences of Dimension TheoremDownload
Verified
32Lecture 32 : Generalized Krull’s Principal Ideal TheoremDownload
Verified
33Lecture 33 : Second proof of Krull’s Principal Ideal TheoremDownload
Verified
34Lecture 34 : The Spec FunctorDownload
Verified
35Lecture 35 : Prime ideals in Polynomial ringsDownload
Verified
36Lecture 36 : Characterization of Equidimensional Affine AlgebraDownload
Verified
37Lecture 37 : Connection between Regular local rings and associated graded ringsDownload
Verified
38Lecture 38 : Statement of the Jacobian Criterion for RegularityDownload
Verified
39Lecture 39 : Hilbert function for Affine AlgebraDownload
Verified
40Lecture 40 : Hilbert Serre TheoremDownload
Verified
41Lecture 41 : Jacobian Matrix and its RankDownload
Verified
42Lecture 42 : Jacobian Matrix and its Rank(Contd)Download
Verified
43Lecture 43 : Proof of Jacobian CritrerionDownload
Verified
44Lecture 44 : Proof of Jacobian Critrerion(Contd)Download
Verified
45Lecture 45 : Preparation for Homological DimensionDownload
Verified
46Lecture 46 : Complexes of Modules and HomologyDownload
Verified
47Lecture 47 : Projective ModulesDownload
Verified
48Lecture 48 : Homological Dimension and Projective moduleDownload
Verified
49Lecture 49 : Global DimensionDownload
Verified
50Lecture 50 : Homological characterization of Regular Local Ring(RLR)Download
Verified
51Lecture 51 : Homological characterization of Regular Local Ring(Contd)Download
Verified
52Lecture 52 : Homological Characterization of Regular Local Rings(Contd)Download
Verified
53Lecture 53 : Regular Local Rings are UFDDownload
Verified
54Lecture 54 : RLR-Prime ideals of height 1Download
Verified
55Lecture 55 : Discrete Valuation RingDownload
Verified
56Lecture 56 : Discrete Valuation Ring(Contd)Download
Verified
57Lecture 57 : Dedekind DomainsDownload
Verified
58Lecture 58 : Fractionary Ideals and Dedekind DomainsDownload
Verified
59Lecture 59 : Characterization of Dedekind DomainDownload
Verified
60Lecture 60 : Dedekind Domains and prime factorization of idealsDownload
Verified


Sl.No Language Book link
1EnglishNot Available
2BengaliNot Available
3GujaratiNot Available
4HindiNot Available
5KannadaNot Available
6MalayalamNot Available
7MarathiNot Available
8TamilNot Available
9TeluguNot Available