6 Phasor diagrams

The resulting equivalent circuit as shown in Fig. 16 is known as the exact equivalent circuit. This circuit can be used for the analysis of the behavior of the transformers. As the no-load current is less than 1% of the load current a simplified circuit known as ‘approximate’ equivalent circuit (see Fig. 16(b)) is usually used, which may be further
simplified to the one shown in Fig. 16(c).

On similar lines to the ideal transformer the phasor diagram of operation can be drawn for a practical transformer also. The positions of the current and induced emf phasor are not known uniquely if we start from the phasor V_1. Hence it is assumed that the phasor ϕ is known. The E_1 and E_2 phasor are then uniquely known. Now, the magnetizing and loss components of the currents can be easily represented. Once I_0 is known, the drop that takes place in the primary resistance and series reactance can be obtained which when added to E_1 gives uniquely the position of V_1 which satisfies all other parameters. This is represented in Fig. 17(a) as phasor diagram on no-load.

Next we proceed to draw the phasor diagram corresponding to a loaded transformer. The position of the E_2 vector is known from the flux phasor. Magnitude of I_2 and the load power factor angle θ_2 are assumed to be known. But the angle θ_2 is defined with respect to the terminal voltage V_2 and not E_2. By trial and error the position of I_2 and V_2 are determined. V_2 should also satisfy the Kirchoff’s equation for the secondary. Rest of the construction of the phasor diagram then becomes routine. The equivalent primary current I_2' is added vectorially to I_0 to yield I_1. $I_1(r_1 + jx_{l1})$ is added to E_1 to yield V_1. This is shown in fig. 17(b) as phasor diagram for a loaded transformer.
Figure 17: Phasor Diagram of a Practical Transformer