Semantic Analysis with Attribute Grammars
Part 1

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Principles of Compiler Design
Outline of the Lecture

- Introduction
- Attribute grammars
- Attributed translation grammars
- Semantic analysis with attributed translation grammars
Compiler Overview

1. Character stream
 - Lexical Analyzer
 - Token stream
 - Syntax Analyzer
 - Syntax tree
 - Semantic Analyzer
 - Annotated syntax tree
 - Intermediate Code Generator
 - Intermediate representation

2. Optimized target-machine code
 - Machine-Dependent Code Optimizer
 - Target-machine code
 - Code Generator
 - Optimized intermediate representation
 - Machine-Independent Code Optimizer
 - Intermediate representation

Symbol Table
Semantic Analysis

- Semantic consistency that cannot be handled at the parsing stage is handled here.
- Parsers cannot handle context-sensitive features of programming languages.
- These are static semantics of programming languages and can be checked by the semantic analyzer.
 - Variables are declared before use.
 - Types match on both sides of assignments.
 - Parameter types and number match in declaration and use.
- Compilers can only generate code to check dynamic semantics of programming languages at runtime.
 - Whether an overflow will occur during an arithmetic operation.
 - Whether array limits will be crossed during execution.
 - Whether recursion will cross stack limits.
 - Whether heap memory will be insufficient.
int dot_prod(int x[], int y[]){
 int d, i; d = 0;
 for (i=0; i<10; i++) d += x[i]*y[i];
 return d;
}

main(){
 int p; int a[10], b[10];
 p = dot_prod(a,b);
}

Samples of static semantic checks in main

- Types of p and return type of dot_prod match
- Number and type of the parameters of dot_prod are the same in both its declaration and use
- p is declared before use, same for a and b
int dot_product(int a[], int b[]) {...}

1 main(){int a[10]={1,2,3,4,5,6,7,8,9,10};
2 int b[10]={1,2,3,4,5,6,7,8,9,10};
3 printf("%d", dot_product(b));
4 printf("%d", dot_product(a,b,a));
5 int p[10]; p=dotproduct(a,b); printf("%d",p);}

In function ‘main’:
error in 3: too few arguments to fn ‘dot_product’
error in 4: too many arguments to fn ‘dot_product’
error in 5: incompatible types in assignment
warning in 5: format ‘%d’ expects type ‘int’, but argument 2 has type ‘int *’
int dot_prod(int x[], int y[]){
 int d, i; d = 0;
 for (i=0; i<10; i++) d += x[i]*y[i];
 return d;
}

main(){
 int p; int a[10], b[10];
 p = dot_prod(a,b);
}

Samples of static semantic checks in *dot_prod*
- *d* and *i* are declared before use
- Type of *d* matches the return type of *dot_prod*
- Type of *d* matches the result type of “∗”
- Elements of arrays *x* and *y* are compatible with “∗”
Dynamic Semantics

```c
int dot_prod(int x[], int y[]){
    int d, i; d = 0;
    for (i=0; i<10; i++) d += x[i]*y[i];
    return d;
}
main(){
    int p; int a[10], b[10];
    p = dot_prod(a,b);
}
```

Samples of dynamic semantic checks in `dot_prod`

- Value of i does not exceed the declared range of arrays x and y (both lower and upper)
- There are no overflows during the operations of "*" and "+
 in $d += x[i]*y[i]$
int fact(int n) {
 if (n==0) return 1;
 else return (n*fact(n-1));
}
main(){int p; p = fact(10); }

Samples of dynamic semantic checks in fact
- Program stack does not overflow due to recursion
- There is no overflow due to “*” in n*fact(n-1)
Semantic Analysis

- Type information is stored in the symbol table or the syntax tree
 - Types of variables, function parameters, array dimensions, etc.
 - Used not only for semantic validation but also for subsequent phases of compilation
- If declarations need not appear before use (as in C++), semantic analysis needs more than one pass
- Static semantics of PL can be specified using attribute grammars
- Semantic analyzers can be generated semi-automatically from attribute grammars
- Attribute grammars are extensions of context-free grammars
Attribute Grammars

- Let $G = (N, T, P, S)$ be a CFG and let $V = N \cup T$.
- Every symbol X of V has associated with it a set of attributes (denoted by $X.a$, $X.b$, etc.)
- Two types of attributes: inherited (denoted by $AI(X)$) and synthesized (denoted by $AS(X)$)
- Each attribute takes values from a specified domain (finite or infinite), which is its type
 - Typical domains of attributes are, integers, reals, characters, strings, booleans, structures, etc.
 - New domains can be constructed from given domains by mathematical operations such as cross product, map, etc.
 - array: a map, $N \rightarrow D$, where, N and D are domains of natural numbers and the given objects, respectively
 - structure: a cross-product, $A_1 \times A_2 \times \ldots \times A_n$, where n is the number of fields in the structure, and A_i is the domain of the i^{th} field
A production $p \in P$ has a set of attribute computation rules (functions).

Rules are provided for the computation of
- Synthesized attributes of the LHS non-terminal of p
- Inherited attributes of the RHS non-terminals of p

These rules can use attributes of symbols from the production p only
- Rules are strictly local to the production p (no side effects)

Restrictions on the rules define different types of attribute grammars
- L-attribute grammars, S-attribute grammars, ordered attribute grammars, absolutely non-circular attribute grammars, circular attribute grammars, etc.
An attribute cannot be both synthesized and inherited, but a symbol can have both types of attributes.

Attributes of symbols are evaluated over a parse tree by making passes over the parse tree.

Synthesized attributes are computed in a bottom-up fashion from the leaves upwards.

- Always synthesized from the attribute values of the children of the node.
- Leaf nodes (terminals) have synthesized attributes initialized by the lexical analyzer and cannot be modified.
- An AG with only synthesized attributes is an *S-attributed grammar* (SAG).
- YACC permits only SAGs.

Inherited attributes flow down from the parent or siblings to the node in question.
The following CFG

\[S \rightarrow A \; B \; C, \; A \rightarrow aA \mid a, \; B \rightarrow bB \mid b, \; C \rightarrow cC \mid c \]

generates: \(L(G) = \{ a^m b^n c^p \mid m, n, p \geq 1 \} \)

We define an AG (attribute grammar) based on this CFG to generate \(L = \{ a^n b^n c^n \mid n \geq 1 \} \)

All the non-terminals will have only synthesized attributes

- \(AS(S) = \{ \text{equal} \uparrow: \{ T, F \} \} \)
- \(AS(A) = AS(B) = AS(C) = \{ \text{count} \uparrow: \text{integer} \} \)
1. $S \rightarrow ABC$ \{ $S.\text{equal} \uparrow:= \text{if } A.\text{count} \uparrow= B.\text{count} \uparrow \& B.\text{count} \uparrow= C.\text{count} \uparrow \text{ then } T \text{ else } F$ \}

2. $A_1 \rightarrow aA_2$ \{ $A_1.\text{count} \uparrow:= A_2.\text{count} \uparrow + 1$ \}

3. $A \rightarrow a$ \{ $A.\text{count} \uparrow:= 1$ \}

4. $B_1 \rightarrow bB_2$ \{ $B_1.\text{count} \uparrow:= B_2.\text{count} \uparrow + 1$ \}

5. $B \rightarrow b$ \{ $B.\text{count} \uparrow:= 1$ \}

6. $C_1 \rightarrow cC_2$ \{ $C_1.\text{count} \uparrow:= C_2.\text{count} \uparrow + 1$ \}

7. $C \rightarrow c$ \{ $C.\text{count} \uparrow:= 1$ \}

Attribute evaluation must be done in a bottom-up manner.

S→ABC
A→aA | a
B→bB | b
C→cC | c
Attribute Grammar - Example 1 (contd.)

1. $S \rightarrow ABC \{ S.\text{equal} \uparrow:= \text{if } A.\text{count} \uparrow= B.\text{count} \uparrow \& B.\text{count} \uparrow= C.\text{count} \uparrow \text{ then } T \text{ else } F \}$

2. $A_1 \rightarrow aA_2 \{ A_1.\text{count} \uparrow:= A_2.\text{count} \uparrow + 1 \}$

3. $A \rightarrow a \{ A.\text{count} \uparrow:= 1 \}$

4. $B_1 \rightarrow bB_2 \{ B_1.\text{count} \uparrow:= B_2.\text{count} \uparrow + 1 \}$

5. $B \rightarrow b \{ B.\text{count} \uparrow:= 1 \}$

6. $C_1 \rightarrow cC_2 \{ C_1.\text{count} \uparrow:= C_2.\text{count} \uparrow + 1 \}$

7. $C \rightarrow c \{ C.\text{count} \uparrow:= 1 \}$
1. \(S \rightarrow ABC \) \(\{ S\.equal \uparrow:= \text{if } A\.count \uparrow= B\.count \uparrow \& B\.count \uparrow= C\.count \uparrow \text{ then } T \text{ else } F \} \)

2. \(A_1 \rightarrow aA_2 \) \(\{ A_1\.count \uparrow:= A_2\.count \uparrow + 1 \} \)

3. \(A \rightarrow a \) \(\{ A\.count \uparrow:= 1 \} \)

4. \(B_1 \rightarrow bB_2 \) \(\{ B_1\.count \uparrow:= B_2\.count \uparrow + 1 \} \)

5. \(B \rightarrow b \) \(\{ B\.count \uparrow:= 1 \} \)

6. \(C_1 \rightarrow cC_2 \) \(\{ C_1\.count \uparrow:= C_2\.count \uparrow + 1 \} \)

7. \(C \rightarrow c \) \(\{ C\.count \uparrow:= 1 \} \)
1. $S \rightarrow ABC \{ S.equal \uparrow:= if \ A.count \uparrow= B.count \uparrow \& B.count \uparrow= C.count \uparrow \ then \ T \ else \ F \}$

2. $A_1 \rightarrow aA_2 \{ A_1.count \uparrow:= A_2.count \uparrow+1 \}$

3. $A \rightarrow a \{ A.count \uparrow:= 1 \}$

4. $B_1 \rightarrow bB_2 \{ B_1.count \uparrow:= B_2.count \uparrow+1 \}$

5. $B \rightarrow b \{ B.count \uparrow:= 1 \}$

6. $C_1 \rightarrow cC_2 \{ C_1.count \uparrow:= C_2.count \uparrow+1 \}$

7. $C \rightarrow c \{ C.count \uparrow:= 1 \}$
Let T be a parse tree generated by the CFG of an AG, G. The *attribute dependence graph* (dependence graph for short) for T is the directed graph, \(DG(T) = (V, E) \), where

\[V = \{ b | b \text{ is an attribute instance of some tree node} \} \], and

\[E = \{ (b, c) | b, c \in V, b \text{ and } c \text{ are attributes of grammar symbols in the same production } p \text{ of } B, \text{ and the value of } b \text{ is used for computing the value of } c \text{ in an attribute computation rule associated with production } p \} \]
An AG G is non-circular, iff for all trees T derived from G, $DG(T)$ is acyclic

- Non-circularity is very expensive to determine (exponential in the size of the grammar)
- Therefore, our interest will be in subclasses of AGs whose non-circularity can be determined efficiently

Assigning consistent values to the attribute instances in $DG(T)$ is attribute evaluation
Attribute Evaluation Strategy

- Construct the parse tree
- Construct the dependence graph
- Perform topological sort on the dependence graph and obtain an evaluation order
- Evaluate attributes according to this order using the corresponding attribute evaluation rules attached to the respective productions
- Multiple attributes at a node in the parse tree may result in that node to be visited multiple number of times
 - Each visit resulting in the evaluation of at least one attribute
Attribute Evaluation Algorithm

Input: A parse tree T with unevaluated attribute instances

Output: T with consistent attribute values

\[
\begin{align*}
&\{ \text{Let } (V, E) = DG(T); \\
&\text{Let } W = \{ b \mid b \in V &\text{ indegree}(b) = 0 \}; \\
&\text{while } W \neq \emptyset \text{ do} \\
&\{ \text{remove some } b \text{ from } W; \\
&\text{value}(b) := \text{value defined by appropriate attribute} \\
&\text{computation rule}; \\
&\text{for all } (b, c) \in E \text{ do} \\
&\{ \text{indegree}(c) := \text{indegree}(c) - 1; \\
&\text{if } \text{indegree}(c) = 0 \text{ then } W := W \cup \{ c \}; \\
&\} \\
&\} \\
\end{align*}
\]
Dependence Graph for Example 1

1,2,3,4,5,6,7 and 2,3,6,5,1,4,7 are two possible evaluation orders. 1,4,2,5,3,6,7 can be used with LR-parsing. The right-most derivation is below (its reverse is LR-parsing order)

S => ABC => ABcC => ABcc => AbBcc => Abbcc => aAbbcc => aabbcc

1. A.count = 1 {A \rightarrow a, \{A.count := 1\}}
2. B.count = 1 {B \rightarrow b, \{B.count := 1\}}
3. C.count = 1 {C \rightarrow c, \{C.count := 1\}}
4. A.count = 2 {A_1 \rightarrow aA_2, \{A_1.count := A_2.count + 1\}}
5. B.count = 2 {B_1 \rightarrow bB_2, \{B_1.count := B_2.count + 1\}}
6. C.count = 2 {C_1 \rightarrow cC_2, \{C_1.count := C_2.count + 1\}}
7. S.equal = 1 {S \rightarrow ABC, \{S.equal := if A.count = B.count & B.count = C.count then T else F\}}
AG for the evaluation of a real number from its bit-string representation
Example: 110.101 = 6.625

\[N \rightarrow L.R, \; L \rightarrow BL \mid B, \; R \rightarrow BR \mid B, \; B \rightarrow 0 \mid 1 \]

\[AS(N) = AS(R) = AS(B) = \{ value \uparrow: real \}, \]
\[AS(L) = \{ length \uparrow: integer, \; value \uparrow: real \} \]

1. \(N \rightarrow L.R \{ N\.value \uparrow:= L\.value \uparrow + R\.value \uparrow \} \)
2. \(L \rightarrow B \{ L\.value \uparrow:= B\.value \uparrow; \; L\.length \uparrow:= 1 \} \)
3. \(L_1 \rightarrow BL_2 \{ L_1\.length \uparrow:= L_2\.length \uparrow + 1; \]
\[L_1\.value \uparrow:= B\.value \uparrow \ast 2^{L_2\.length\uparrow} + L_2\.value \uparrow \} \)
4. \(R \rightarrow B \{ R\.value \uparrow:= B\.value \uparrow / 2 \} \)
5. \(R_1 \rightarrow BR_2 \{ R_1\.value \uparrow:= (B\.value \uparrow + R_2\.value \uparrow) / 2 \} \)
6. \(B \rightarrow 0 \{ B\.value \uparrow:= 0 \} \)
7. \(B \rightarrow 1 \{ B\.value \uparrow:= 1 \} \)