Graph Theory: Lecture No. 1

L. Sunil Chandran

Computer Science and Automation,
Indian Institute of Science, Bangalore
Email: sunil@csa.iisc.ernet.in
References

1. Reinhard Diestel : Graph Theory (Springer)
2. Douglas B. West: Introduction to Graph Theory (Prentice-Hall India)
3. A. Bondy and U.S.R. Murty: Graph Theory (Springer)
4. B. Bollobas : Modern Graph Theory (Springer)
What is a Graph?

It is a triple consisting of a vertex set $V(G)$, an edge set $E(G)$ and a relation that associates with each edge two vertices (not necessarily distinct) called its end points.
- A loop
- Multiple edge.
- Simple Graph
- Finite Graph
Some simple graphs

- Complete Graph.
- Cycle
- Path
Subgraph and Induced Subgraph

- H is a subgraph of G: Then $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$. The assignment of end points to edges in H is the same as that in G.

- H is an induced subgraph of G on S, where $S \subseteq V(G)$: Then $V(H) = S$ and $E(H)$ is the set of edges of G such that both the end points belong to S.
A graph G is connected if each pair of vertices belongs to a path.
An Isomorphism from a simple graph G to a simple graph H is a bijection $f : V(G) \rightarrow V(H)$ such that $(u, v) \in E(G)$ if and only if $(f(u), f(v)) \in E(H)$.
Forest and Tree

- A graph without any cycle is acyclic.
- A forest is an acyclic graph
- A tree is a connected acyclic graph.
Bipartite Graph

A graph G is bipartite if $V(G)$ is the union of two disjoint (possibly empty) independent sets called partite sets of G. (A subset $S \subseteq V(G)$ is an independent set if the induced subgraph on S contains no edges.)
A tree is a bipartite graph.

Can we say that the complete graph K_n is bipartite?

The complete bipartite graph.
A set $S \subseteq V(G)$ is a vertex cover of G (of the edges of G) if every edge of G is incident with a vertex in S. A vertex cover of the minimum cardinality is called a minimum vertex cover. We will denote this set by MVC(G).
What is the cardinality of MVC in the complete graph K_n?
What about the complete bipartite graph $K_{m,n}$?
The cycle C_n, when n is even and odd?
The cardinality of a biggest independent set in G is called the independence number (or stability number) of G and is denoted by $\alpha(G)$.
Is there any relation between \(|MVC(G)|\) and \(\alpha(G)\)?

- If we remove a VC from \(G\), the rest is an independent set.
- So, if we remove MVC from \(G\), the rest, i.e. \(V - MVC\) is an independent set.
- So, \(\alpha(G) \geq n - |MVC(G)|\). Thus \(|MVC(G)| \geq n - \alpha(G)\).
- Similarly if we remove any independent set from \(G\), the rest is VC, and so \(|MVC| \leq n - \alpha(G)\).
- Thus we get \(|MVC| = n - \alpha(G)\).
- If we denote —MVC\((G)\)— by \(\beta(G)\), then we have \(\beta(G) + \alpha(G) = n\).
Matching

- A set M of independent edges in a graph is called a matching.
- M is a matching of $U \subseteq V(G)$, if every vertex in U is incident with an edge in M.
- Then a vertex in U is a matched vertex. The vertices which are not incident with any edge of M is unmatched.
A matching M is a perfect matching of G, if every vertex in G is matched by M.
If G has n vertices, what is the cardinality of a perfect matching M of G?
The cardinality of the biggest matching in G can be denoted by $\alpha'(G)$.
What is the value of $\alpha'(G)$ for:

- Cycle C_n
- Path P_n
- Complete Graph K_n
- Complete Bipartite graph $K_{m,n}$