Automatic Parallelization - Part 2

Y.N. Srikant

Department of Computer Science
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design
Automatic Parallelization

- Automatic conversion of sequential programs to parallel programs by a compiler
- Target may be a vector processor (vectorization), a multi-core processor (concurrentization), or a cluster of loosely coupled distributed memory processors (parallelization)

Parallelism extraction process is normally a source-to-source transformation

Requires dependence analysis to determine the dependence between statements

Implementation of available parallelism is also a challenge
 - For example, can all the iterations of a 2-nested loop be run in parallel?
Data Dependence Relations

Flow or true dependence

\[S1: \; x = \ldots \]
\[\downarrow \]
\[S2: \; \ldots = x \]
\[\delta \]

Anti-dependence

\[S1: \; \ldots = x \]
\[\downarrow \]
\[S2: \; x = \ldots \]
\[\delta \]

Output dependence

\[S1: \; x = \ldots \]
\[\downarrow \]
\[S2: \; x = \ldots \]
\[\delta^o \]
Forward or “<” direction means dependence from iteration i to $i + k$ (i.e., computed in iteration i and used in iteration $i + k$)

Backward or “>” direction means dependence from iteration i to $i - k$ (i.e., computed in iteration i and used in iteration $i - k$). This is not possible in single loops and possible in doubly or higher levels of nesting.

Equal or “=” direction means that dependence is in the same iteration (i.e., computed in iteration i and used in iteration i)
Individual nodes are statements of the program and edges depict data dependence among the statements.

If the DDG is acyclic, then vectorization of the program is straightforward:
- Vector code generation can be done using a topological sort order on the DDG.

Otherwise, find all the strongly connected components of the DDG, and reduce the DDG to an acyclic graph by treating each SCC as a single node:
- SCCs cannot be fully vectorized; the final code will contain some sequential loops and possibly some vector code.
for $l = 1$ to 100 do {
 \textbf{S1:} $X(l) = Y(l) + 10$
 for $j = 1$ to 100 do {
 \textbf{S2:} $B(j) = A(j, N)$
 for $k = 1$ to 100 do {
 \textbf{S3:} $A(j+1, k) = B(j) + C(j, k)$
 }
 }
 \textbf{S4:} $Y(l+j) = A(j+1, N)$
}
\textbf{S1:} $X(1:100) = Y(1:100) + 10$

\textbf{code for S2, S3, S4 generated at higher levels}
for \(i = 1 \) to \(100 \) do {
 for \(j = 1 \) to \(100 \) do {
 code for S2 and S3 generated at higher levels
 }
}
S4: \(Y(l+1:1+100) = A(2:101, N) \)

Level 2 DDG for the composite node S2S3S4
Vectorization Example 3.3

```plaintext
for I = 1 to 100 do {
    for J = 1 to 100 do {
        S2: B(J) = A(J,N)
        S3: A(J+1, 1:100) = B(J) + C(J, 1:100)
    }
    S4: Y(I+1:I+100) = A(2:101, N)
}
S1: X(1:100) = Y(1:100) + N
```

Level 3 DDG for the composite node S2S3
Data Dependence Direction Vector

- Data dependence relations are augmented with a direction of data dependence which is expressed as a direction vector.
- There is one direction vector component for each loop in a nest of loops.
- The *data dependence direction vector* (or direction vector) is $\Psi = (\Psi_1, \Psi_2, \ldots, \Psi_d)$, where $\Psi_k \in \{<, =, >, \leq, \geq, \neq, *\}$
- We say $S_v \delta_{\Psi_1, \ldots, \Psi_d} S_w$ (or $S_v \delta_{\Psi} S_w$), when
 1. there exist particular instances of S_v and S_w, say, $S_v[i_1, \ldots, i_d]$ and $S_w[j_1, \ldots, j_d]$, such that $S_v[i_1, \ldots, i_d] \delta S_w[j_1, \ldots, j_d]$, and
 2. $\theta(i_k) \Psi_k \theta(j_k)$, for $1 \leq k \leq d$
- $\theta(i_k) < \theta(j_k)$ only when iteration i_k is executed before iteration j_k
- $\theta(i_k) = \theta(j_k)$ only when $i_k = j_k$
- $\theta(i_k) > \theta(j_k)$ only when iteration i_k is executed after iteration j_k
Data Dependence Direction Vector

- The function $\theta(l_k) = l_k$, when the loop increment is positive and $\theta(l_k) = -l_k$, when the loop increment is negative, satisfies the above requirements.

- Forward or “<” direction means dependence from iteration i to $i + k$ (i.e., computed in iteration i and used in iteration $i + k$).

- Backward or “>” direction means dependence from iteration i to $i - k$ (i.e., computed in iteration i and used in iteration $i - k$). This is not possible in single loops and possible in doubly or higher levels of nesting.

- Equal or “=” direction means that dependence is in the same iteration (i.e., computed in iteration i and used in iteration i).

- “*” is used when the direction is unknown or when all three of $<$, $=$, $>$ apply.
Direction Vector Example 1

for J = 1 to 100 do {
S: \(X(J) = X(J) + c \)
}

for J = 1 to 99 do {
S: \(X(J+1) = X(J) + c \)
}

for J = 1 to 99 do {
S: \(X(J) = X(J+1) + c \)
}

for J = 99 downto 1 do {
S: \(X(J) = X(J+1) + c \)
}

for J = 2 to 101 do {
S: \(X(J) = X(J-1) + c \)
}

\(S \delta_\geq S \)
\[
\begin{align*}
X(1) &= X(1) + c \\
X(2) &= X(2) + c
\end{align*}
\]

\(S \delta_< S \)
\[
\begin{align*}
X(2) &= X(1) + c \\
X(3) &= X(2) + c
\end{align*}
\]

\(S \delta_< S \)
\[
\begin{align*}
X(1) &= X(2) + c \\
X(2) &= X(3) + c
\end{align*}
\]

\(S \delta_< S \)
\[
\begin{align*}
X(99) &= X(100) + c \\
X(98) &= X(99) + c
\end{align*}
\]

\text{note ‘-ve’ increment}

\(S \delta_< S \)
\[
\begin{align*}
X(2) &= X(1) + c \\
X(3) &= X(2) + c
\end{align*}
\]
for \(i = 1 \) to 5 do {
 for \(j = 1 \) to 4 do {
 S1: \(A(i, j) = B(i, j) + C(i, j) \)
 S2: \(B(i, j+1) = A(i, j) + B(i, j) \)
 }
}

\[
\begin{align*}
\text{Demonstration of direction vector} \\
\text{I=1, J=1: } & A(1,1)=B(1,1)+C(1,1) \\
& B(1,2)=A(1,1)+B(1,1) \\
\text{J=2: } & A(1,2)=B(1,2)+C(1,2) \\
& B(1,3)=A(1,2)+B(1,2) \\
\text{J=3: } & A(1,3)=B(1,3)+C(1,3) \\
& B(1,4)=A(1,3)+B(1,3)
\end{align*}
\]
Direction Vector Example 3

\[S_1 \delta_{(\langle,\rangle)} S_2 \]

```
for I = 1 to N do {
    for J = 1 to N do {
        S1:   A(I+1, J) = ...
        S2:   ... = A(I, J+1)
    }
}
```

```
I = 1, J = 2
S1:   A(2,2) = ...
I = 2, J = 1
S2:   ... = A(2,2)
```

\[S_2 \delta_{(\langle,\rangle)} S_1 \]

```
for I = 1 to N do {
    for J = 1 to N do {
        S1:   A(I+1, J) = ...
        S2:   ... = A(I, J+1)
    }
}
```

```
I = 1, J = 2
S2:   A(2,2) = ...
I = 2, J = 1
S1:   ... = A(2,2)
```
Direction Vector Example 4

```plaintext
for I = 1 to 100 do {
    for J = 1 to 100 do {
        for K = 1 to 100 do {
            S1: X(I, J+1, K) = A(I, J, K) + 10
        }
    }
    for L = 1 to 50 do {
        S2: A(I+1, J, L) = X(I, J, L) + 5
    }
}
```

<table>
<thead>
<tr>
<th>J = 1</th>
<th>I = 1</th>
<th>I = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X(1,2,K) = A(1,1,K)</td>
<td>X(2,2,K) = A(2,1,K)</td>
</tr>
<tr>
<td></td>
<td>A(2,1,L) = X(1,1,L)</td>
<td>A(3,1,L) = X(2,1,L)</td>
</tr>
<tr>
<td>J = 2</td>
<td>X(1,3,K) = A(1,2,K)</td>
<td>X(2,3,K) = A(2,2,K)</td>
</tr>
<tr>
<td></td>
<td>A(2,2,L) = X(1,2,L)</td>
<td>A(3,2,L) = X(2,2,L)</td>
</tr>
<tr>
<td>J = 3</td>
<td>X(1,4,K) = A(1,3,K)</td>
<td>X(2,4,K) = A(2,3,K)</td>
</tr>
<tr>
<td></td>
<td>A(2,3,L) = X(1,3,L)</td>
<td>A(3,3,L) = X(2,3,L)</td>
</tr>
</tbody>
</table>
for \(l = 1 \) to 100 do {
S1: \(X(l) = Y(l) + 10 \)
\hspace{1cm} for \(j = 1 \) to 100 do {
S2: \(B(j) = A(j, N) \)
\hspace{1cm} for \(k = 1 \) to 100 do {
S3: \(A(j+1, k) = B(j) + C(j, k) \)
}\}
S4: \(Y(l+j) = A(j+1, N) \)
\}

\(l=1, j=1 \) \hspace{1cm} B(1) = \ldots \\
\hspace{1.5cm} \text{for } k = \ldots \text{ do } \\
\hspace{2.5cm} \ldots = B(1) \\
\hspace{1cm} j=2 \hspace{1cm} B(2) = \ldots \\
\hspace{1.5cm} \text{for } k = \ldots \text{ do } \\
\hspace{2.5cm} \ldots = B(2) \\
\hspace{1cm} l=2, j=1 \hspace{1cm} B(1) = \ldots \\
\hspace{1.5cm} \text{for } k = \ldots \text{ do } \\
\hspace{2.5cm} \ldots = B(1) \\

\(l=1, j=1 \) \\
\hspace{1cm} A(1, N) = \ldots \\
\hspace{1.5cm} J=2 \\
\hspace{2.5cm} A(2, N) = \ldots \\
\hspace{1.5cm} A(3, N) = \ldots \\
\hspace{1cm} l=2, j=1 \\
\hspace{1cm} A(1, N) = \ldots \\
\hspace{1.5cm} A(2, N) = \ldots \\
\hspace{2.5cm} A(2, N) = \ldots \\
\hspace{1cm} l=3, j=1 \\
\hspace{1cm} A(2, N) = \ldots \\
\hspace{1.5cm} S3 \overset{\delta_{\leq}}{\rightarrow} S2 \\
\hspace{2.5cm} S2 \overset{\delta_{\neq}}{\rightarrow} S3 \\
\hspace{2.5cm} S3 \overset{\delta_{<}}{\rightarrow} S2 \\
\hspace{2.5cm} S2 \overset{\delta_{<}}{\rightarrow} S3 \\
\hspace{2.5cm} S3 \overset{\delta_{<}}{\rightarrow} S4 \\
\hspace{2.5cm} S4 \overset{\delta_{<}}{\rightarrow} S3

for $l = 1$ to 100 do {
 S1: $X(l) = Y(l) + 10$
 for $j = 1$ to 100 do {
 S2: $B(j) = A(j, N)$
 for $k = 1$ to 100 do {
 S3: $A(j+1, k) = B(j) + C(j, k)$
 }
 }
 S4: $Y(l+j) = A(j+1, N)$
}

$l=1, j=1$ $B(1) = ...$
 for $k = ...$ do
 ...
 $j=2$ $B(2) = ...$
 for $k = ...$ do
 ...
$l=2, j=1$ $B(1) = ...$
 for $k = ...$...
Execution Order Dependence and Direction Vector

- $S_v \Theta S_w$ if S_v can be executed before S_w (in the normal execution of the program)
- $S_v \delta \psi S_w$ only if $S_v \Theta \psi S_w$
- *i.e.*, Θ may hold but δ may not hold
- Example:

| S_1: $a=b+c$ | $S_1 \Theta S_2$, $S_2 \Theta S_3$, and $S_1 \Theta S_3$ are all true, but $S_1 \delta S_2$ and $S_1 \delta S_3$ are false; only $S_2 \delta S_3$ is true |
| S_2: $a=c+d$ |
| S_3: $e=a+f$ |

- Hence execution ordering is weaker
- Execution order direction vector is similar to the data dependence direction vector (similar definition)
- Not all direction vectors are possible
- We will now consider legal exec order d.v. by looking at the syntax of constructs
Single Loop Legal Direction Vectors - 1

- $S_1 \Theta_{(\leq)} S_2$, $S_2 \Theta_{(<)} S_1$, $S_1 \Theta_{(<)} S_1$, and $S_2 \Theta_{(<)} S_2$ are all possible.
- Note that $S_2 \Theta_{(=)} S_1$ is not possible because S_2 comes after S_1 in lexical ordering.

for $l = L$ to U do {
 S_1: ...
 S_2: ...
}

l = 1
S1
S2

l = 2
S1
S2
Single Loop Legal Direction Vectors - 2

- \(S_1 \Theta(=) S_2 \) and \(S_2 \Theta(=) S_1 \) cannot happen
- \(S_1 \Theta(<) S_2, S_2 \Theta(<) S_1, S_1 \Theta(<) S_1, \) and \(S_2 \Theta(<) S_2 \) are all possible

```
for l = L to U do {
    if (...) then
        S1: ...
        else
            S2: ...
    endif
}
```

<table>
<thead>
<tr>
<th>l</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>S1</td>
</tr>
</tbody>
</table>

S1 and S2 may be in any order, but both S1 and S2 cannot occur together in any iteration.
Loop 1

- $S_1 \Theta(=,\leq) S_2$, $S_2 \Theta(=,<) S_1$, $S_1 \Theta(<,*), S_2$, $S_2 \Theta(<,*), S_1$, $S_1 \Theta(<,*), S_1$, and $S_2 \Theta(<,*), S_2$ are all possible.
- $S_2 \Theta(=,=) S_1$ and $S_1 \Theta(=,>) S_2$ are not possible.

```
for I = L1 to U1 do {
  for J = LJ to UJ do {
    S1: ...
  }
  S2: ...
}
```
Multi-Loop Legal Direction Vectors - 2

Loop 2

- $S_1 \Theta(=,<) S_2$, $S_1 \Theta(<,\ast) S_2$, $S_2 \Theta(=,<) S_1$, and $S_2 \Theta(<,\ast) S_1$ are all possible
- $S_2 \Theta(=,=) S_1$ and $S_1 \Theta(=,=) S_2$ are not possible

```
for l = Ll to Ul do {
    for j = Lj to Uj do {
        if (...) then
            S1: ...
        else
            S2: ...
        end if
    }
}
```
Given a program segment such as:

\[
\text{for } I_1 = L_1 \text{ to } U_1 \text{ by } N_1 \text{ do } \{ \\
\ldots \\
\text{for } I_d = L_d \text{ to } U_d \text{ by } N_d \text{ do } \{ \\
S_v : \ldots X(\ldots, f(I_1, \ldots, I_d), \ldots) \ldots \\
S_w : \ldots X(\ldots, g(I_1, \ldots, I_d), \ldots) \ldots \\
\} \\
\ldots \\
\} \\
\ldots \\
\]
Data Dependence Equation

Suppose that \(\bar{l} = (l_1, ..., l_d) \), and \(f(\bar{l}) \) and \(g(\bar{l}) \) are given by

\[
\begin{align*}
 f(\bar{l}) & = A_0 + \sum_{k=1}^{d} A_k l_k \\
 g(\bar{l}) & = B_0 + \sum_{k=1}^{d} B_k l_k
\end{align*}
\]

We try to find solutions \(\bar{i} \) and \(\bar{j} \) for \(\bar{l} \) that satisfy the dependence equation

\[
 f(\bar{i}) = g(\bar{j})
\]

such that the DV is also satisfied

\[
\theta(i_k) \psi_k \theta(j_k)
\]
If we use a normalized index I^n_k instead of I_k, where

$$I_k = I^n_k N_k + L_k$$

I^n_k satisfies the inequality $0 \leq I^n_k \leq (U_k - L_k)/N_k$ and has increment one.

The dependence equations now become

$$f^n(I^n) = A_0 + \sum_{k=1}^{d} A_k N_k I^n_k + \sum_{k=1}^{d} A_k L_k$$

$$g^n(I^n) = B_0 + \sum_{k=1}^{d} B_k N_k I^n_k + \sum_{k=1}^{d} B_k L_k$$

Finding solutions \bar{i}^n and \bar{j}^n for \bar{I}^n to the normalized equations is equivalent to finding solutions to the original equation.
The GCD Test

The dependence equation

\[A_1 x_1 + \ldots + A_n x_n - B_1 y_1 - \ldots - B_n y_n = B_0 - A_0 \]

has a solution if and only if

\[\text{GCD}(A_1, A_2, \ldots, A_d, B_1, B_2, \ldots, B_d) \text{ divides } B_0 - A_0 \]

The GCD test is quick but not very effective in practice.

The GCD test indicates dependence whenever the dependence equation has a solution anywhere, not necessarily within the region imposed by the loop bounds.