Automatic Parallelization - Part 1

Y.N. Srikant

Department of Computer Science
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design
Automatic Parallelization

- Automatic conversion of sequential programs to parallel programs by a compiler
- Target may be a vector processor (vectorization), a multi-core processor (concurrentization), or a cluster of loosely coupled distributed memory processors (parallelization)
- Parallelism extraction process is normally a source-to-source transformation
- Requires dependence analysis to determine the dependence between statements
- Implementation of available parallelism is also a challenge
 - For example, can all the iterations of a 2-nested loop be run in parallel?
for $I = 1$ to 100 do {
 $X(I) = X(I) + Y(I)$
}

can be converted to

$X(1:100) = X(1:100) + Y(1:100)$

The above code can be run on a vector processor in $O(1)$ time. The vectors X and Y are fetched first and then the vector X is written into
for $I = 1$ to 100 do {
 $X(I) = X(I) + Y(I)$
}

can be converted to

forall $I = 1$ to 100 do {
 $X(I) = X(I) + Y(I)$
}

The above code can be run on a multi-core processor with all the 100 iterations running as separate threads. Each thread “owns” a different I value.
for $I = 1$ to 100 do
 $X(I+1) = X(I) + Y(I)$

cannot be converted to

$X(2:101) = X(1:100) + Y(1:100)$

because of dependence as shown below

$X(2) = X(1) + Y(1)$
$X(3) = X(2) + Y(2)$
$X(4) = X(3) + Y(3)$
\ldots
Transformations before Dependence Analysis

- Array subscripts should be linear functions of loop variables
- Loop lower bound should be one and the loop increment should be one
- A few loop transformations are carried out to ensure the above
 - Loop normalization
 - Induction variable substitution
 - Expression folding and forward substitution
Loop Normalization

Loop lower bound → 1, and loop increment → 1

<table>
<thead>
<tr>
<th>Original Loop</th>
<th>Normalized Loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>for (l = 1) to 100 do {</td>
<td>for (l = 1) to 100 do {</td>
</tr>
<tr>
<td>(KI = l)</td>
<td>(KI = l)</td>
</tr>
<tr>
<td>for (J = 1) to 300 by 3 do {</td>
<td>for (J = 1) to 100 do {</td>
</tr>
<tr>
<td>{</td>
<td>{</td>
</tr>
<tr>
<td>(KI = KI + 2)</td>
<td>(KI = KI + 2)</td>
</tr>
<tr>
<td>(U(J) = U(J) \ast W(KI))</td>
<td>(U(3 \ast J - 2) = U(3 \ast J - 2) \ast W(KI))</td>
</tr>
<tr>
<td>(V(J + 4) = V(J) + W(KI))</td>
<td>(V(3 \ast J + 1) = V(3 \ast J - 2) + W(KI))</td>
</tr>
<tr>
<td>}</td>
<td>}</td>
</tr>
<tr>
<td>}</td>
<td>}</td>
</tr>
<tr>
<td></td>
<td>J = 301</td>
</tr>
</tbody>
</table>
for I = 1 to 100 do {
 KI = I
 for J = 1 to 100 do {
 U(3*J-2) = U(3*J-2) * W(KI+2*J)
 V(3*J+1) = V(3*J-2) * W(KI+2*J)
 }
 KI = KI + 200
 J = 301
}

Now KI is a constant in the J-loop. This is the inverse of operator strength reduction.
for I = 1 to 100 do {
 for J = 1 to 100 do {
 S1: \(U(3J-2) = U(3J-2) \times W(I+2J) \)
 S2: \(V(3J+1) = V(3J-2) \times W(I+2J) \)
 }
 KI = I+200 // may be deleted if KI is not live
 J = 301 // may be deleted if J is not live
}

Now all subscripts are linear functions of loop variables as needed for the dependence analysis.
Vector Code Generation

I = 1, \ J = 1, \ S1: U(1) = U(1) + ... \\
S2: V(4) = V(1) + ... \\
J = 2, \ S1: U(2) = U(2) + ... \\
S2: V(7) = V(4) + ...

- The dependence $S1 \bar{\delta}_{(=,=)} S1$ is harmless for vectorization of $S1$
- But, the dependence $S2 \delta_{(=,<)} S2$ prevents vectorization of $S2$

for I = 1 to 100 do {
 U(1:298:3) = U(1:298:3) * W(I-2:I+200:2)
 for J = 1 to 100 do {
 V(3*J+1) = V(3*J-2) * W(I+2*J)
 }
}
Data Dependence Relations

Flow or true dependence

\[S_1: X = \ldots \]
\[S_2: \ldots = X \]

\[\delta \]

Anti-dependence

\[S_1: \ldots = X \]
\[S_2: X = \ldots \]

\[\overline{\delta} \]

Output dependence

\[S_1: X = \ldots \]
\[S_2: X = \ldots \]

\[\delta^o \]
Data Dependence Direction Vector

- Forward or “<” direction means dependence from iteration i to $i + k$ (i.e., computed in iteration i and used in iteration $i + k$)
- Backward or “>” direction means dependence from iteration i to $i - k$ (i.e., computed in iteration i and used in iteration $i - k$). This is not possible in single loops and possible in doubly or higher levels of nesting
- Equal or “=” direction means that dependence is in the same iteration (i.e., computed in iteration i and used in iteration i)
Individual nodes are statements of the program and edges depict data dependence among the statements.

If the DDG is acyclic, then vectorization of the program is straightforward.

- Vector code generation can be done using a topological sort order on the DDG.

Otherwise, find all the strongly connected components of the DDG, and reduce the DDG to an acyclic graph by treating each SCC as a single node.

- SCCs cannot be fully vectorized; the final code will contain some sequential loops and possibly some vector code.
Any dependence with a forward (≤) direction in an outer loop will be satisfied by the serial execution of the outer loop.

If an outer loop L is run in sequential mode, then all the dependences with a forward (≤) direction at the outer level (of L) will be automatically satisfied (even those of the loops inner to L).

However, this is not true for those dependences with with (≥) direction at the outer level; the dependences of the inner loops will have to be satisfied by appropriate statement ordering and loop execution order.
Vectorization Example 1

```
for i = 1 to 99 {
  S1:  X(i) = i
  S2:  B(i) = 100 - i
}
for i = 1 to 99 {
  S3:  A(i) = F(X(i))
  S4:  X(i+1) = G(B(i))
}
```

\[X(1:99) = (/1:99/) \]
\[B(1:99) = (/99:1:-1/) \]
\[X(2:100) = G(B(1:99)) \]
\[A(1:99) = F(X(1:99)) \]
Vectorization Example 2.1

\[\text{for } I = 1 \text{ to } 100 \text{ do } \{
\text{for } J = 1 \text{ to } 100 \text{ do } \{
\text{for } K = 1 \text{ to } 100 \text{ do } \{
X(I, J+1, K) = A(I, J, K) + 10
\}
\}
\}
\]

\[\text{for } I = 1 \text{ to } 100 \text{ do } \{
A(I+1, J, L) = X(I, J, L) + 5
\}
\]

\[\text{for } I = 1 \text{ to } 100 \text{ do } \{
X(I, 2:101, 1:100) = A(I, 1:100, 1:100) + 10
A(I+1, 1:100, 1:50) = X(I, 1:100, 1:50) + 5
\}\]
Vectorization Example 2.2

Y.N. Srikant
Automatic Parallelization

```
for I = 1 to 100 do {
  for J = 1 to 100 do {
    for K = 1 to 100 do {
      S1: X(I, J+1, K) = A(I, J, K) + 10
    }
    for L = 1 to 50 do {
      S2: A(I+1, J, L) = X(I, J, L) + 5
    }
  }
}
```
Vectorization Example 2.3

if the I loop is run sequentially, the dependences change as shown and there are no more cycles. The loops can be vectorized.

for $i = 1$ to 100 do {
 for $j = 1$ to 100 do {
 for $k = 1$ to 100 do {
 $S1: X(i, j+1, k) = A(i, j, k) + 10$
 }
 for $l = 1$ to 50 do {
 $S2: A(i+1, j, l) = X(i, j, l) + 5$
 }
 }
}

for $i = 1$ to 100 do {
 $X(i, 2:101, 1:100) = A(i, 1:100, 1:100) + 10$
 $A(i+1, 1:100, 1:50) = X(i, 1:100, 1:50) + 5$
}
for $l = 1$ to 100 do {
 for $j = 1$ to 100 do {
 for $k = 1$ to 100 do {
 $S1$: $X(l, j+1, k) = A(l, j, k) + 10$
 }
 for $l = 1$ to 50 do {
 $S2$: $A(l+1, j+1, l) = X(l, j, l) + 5$
 }
 }
}

for $l = 1$ to 100 do {
 $X(l, 2:101, 1:100) = A(l, 1:100, 1:100) + 10$
 $A(l+1, 2:101, 1:50) = X(l, 1:100, 1:50) + 5$
}
Vectorization Example 2.5

for \(l = 1 \) to 100 do {
 for \(j = 1 \) to 100 do {
 for \(k = 1 \) to 100 do {
 \(S1: \quad X(l, j+1, k) = A(l, j, k) + 10 \n \}
 } for \(l = 1 \) to 50 do {
 \(S2: \quad A(l+1, j+1, l) = X(l, j, l) + 5 \n \}
}

<table>
<thead>
<tr>
<th>(J) = 1</th>
<th>(I = 1)</th>
<th>(I = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X(1,2,K) = A(1,1,K))</td>
<td>(X(2,2,K) = A(2,1,K))</td>
<td></td>
</tr>
<tr>
<td>(A(2,2,L) = X(1,1,L))</td>
<td>(A(3,2,L) = X(2,1,L))</td>
<td></td>
</tr>
<tr>
<td>(J = 2)</td>
<td>(X(1,3,K) = A(1,2,K))</td>
<td>(X(2,2,K) = A(2,2,K))</td>
</tr>
<tr>
<td>(A(2,3,L) = X(1,2,L))</td>
<td>(A(3,3,L) = X(2,2,L))</td>
<td></td>
</tr>
<tr>
<td>(J = 3)</td>
<td>(X(1,4,K) = A(1,3,K))</td>
<td>(X(2,4,K) = A(2,3,K))</td>
</tr>
<tr>
<td>(A(2,4,L) = X(1,3,L))</td>
<td>(A(3,4,L) = X(2,3,L))</td>
<td></td>
</tr>
</tbody>
</table>
for $l = 1$ to 100 do
 \begin{itemize}
 \item S1: $X(l) = Y(l) + 10$
 \begin{itemize}
 \item for $j = 1$ to 100 do
 \end{itemize}
 \item S2: $B(j) = A(j, N)$
 \begin{itemize}
 \item for $k = 1$ to 100 do
 \end{itemize}
 \item S3: $A(j+1, K) = B(j) + C(j, K)$
 \end{itemize}
\begin{itemize}
 \item S4: $Y(l+j) = A(j+1, N)$
\end{itemize}
\end{itemize}
\begin{itemize}
 \item for $l = 1$ to 100 do
 \begin{itemize}
 \item code for S2, S3, S4 generated at higher levels
 \end{itemize}
\end{itemize}
\item S1: $X(1:100) = Y(1:100) + 10$
for \(l = 1 \) to 100 do {
 for \(j = 1 \) to 100 do {
 \text{code for S2 and S3 generated at higher levels}
 }
}

S4: \(Y(l+1:i+100) = A(2:101, N) \)

S1: \(X(1:100) = Y(1:100) + N \)

\(\delta_\leq \)

Level 2 DDG for the composite node S2S3S4
Vectorization Example 3.3

for \(I = 1 \) to 100 do {
 for \(J = 1 \) to 100 do {
 S2: \(B(J) = A(J,N) \)
 S3: \(A(J+1, 1:100) = B(J) + C(J, 1:100) \)
 }
 S4: \(Y(I+1:I+100) = A(2:101, N) \)
}
S1: \(X(1:100) = Y(1:100) + N \)

Level 3 DDG for the composite node S2S3