Performance Metrics

- bandwidth (throughput)
- latency (delay)
- Bandwidth –
 - single physical link
 - logical process to channel
- Definition of bandwidth: Number of bits transmitted/second
Width of Bit and Bandwidth

1 sec

Each bit – 1 μs wide

1 sec

Each bit – 0.5 μs wide

\Rightarrow Large Bandwidth
Performance Metrics

- Latency: How long a message takes to travel from one end of the network to another
- Speed of light
- Propagation delay

- Vacuum: 3×10^8 m/sec
- Cable: 2.3×10^8 m/sec
- Fiber: 2.0×10^8 m/sec
Performance Metrics

- Amount of time to transmit a unit of data
 - Network Bandwidth
 - Size of Packet
- Queuing delays
- (storing and forwarding at switches)
- Latency = propagation delay + transmit time + queue
- Propagation delay = distance / speed of light
- Bandwidth + latency = performance characteristics of a network
Performance Characteristics

- channel could be 1 Mbps / 100 Mbps
- Application behave different
 - across the continent
 - across the room
- Round trip time:
 - 1 Mbps - 100ms
 - 100 Mbps - 1ms
Performance Characteristics

Example:
- Channel Capacity: 1x10 Mbps
- Datalength: 10 bits
- Transmit time = 10 \text{ microseconds}
- Channel = 100 Mbps bits / sec
- Transmit time = 0.010 \text{ microseconds}
Performance Characteristics

- RTT = 100 ms, 1 ms
- Latency = 100 + 10 \times 10^{-3}
 = 100.010 ms
- Latency = 1 + 10 \times 10^{-3}
 = 1.001 ms
 - Latency dominated by RTT.
Performance Metrics

- Large files
 - Image of size $25 \times 10^6 \times 8$ bits
 - Channel Capacity 10×10^6 bits/s
 - Time taken to transmit image 20 s
 - Suppose RTT = 1 ms
 - Latency = 20.001 sec
 - Suppose RTT = 100 ms
 - Latency = 20.1 sec
- Bandwidth dominates latency
Performance Metrics

• Large Latency
 – Example: CPU = 200x10^6 instructions/s
 – Latency 100ms, for 5000 miles

\[
\frac{200 \times 10^6 \times 0.1}{1} = 20 \times 10^6 \text{ instr / sec}
\]

\[
\Rightarrow \frac{20 \times 10^6}{5 \times 10^3} = 4000 \text{ instr / mile}
\]
Performance Metrics

• 4000 instr / mile is lost
 – Is it worth going across network?
 – Bandwidth wasted
 – Solution
 • Treat the channel as pipe
Network as Pipe

• The pipe holds data
Network as a Pipe

- **Example**
 - Latency - 50 ms
 - BW - 50 Mbps

- **Pipe can hold**
 - $50 \times 10^{-3} \times 50 \times 10^6$ bits of data
 - Bandwidth wasted if sender does not fill the pipe
Throughput

- **Throughput:**
 - Transfer Size / Transfer Time
- **Transfer Time**
 - RTT + (Transfer Size / BW)
- **If RTT large, increase in BW does not reduce transfer time**
Throughput

• Example:
 – Latency: 100ms
 – Channel Capacity: 1 Mbps, 1 Gbps
 – Data: 10 MB
 – On 1 Mbps channel
 • Time taken = 80.1s
 – On 1 Gbps channel
 • Time taken = 0.180s
Throughput

• Throughput for 1 Mbps channel
 – \(80/80.1 \text{ Mbps} = 99.87 \text{ Mbps} \Rightarrow \text{very efficient}\)
 \(\Rightarrow \text{reaches channel capacity}\)

• Throughput for 1 Gbps channel
 – \(80/0.180 \text{ Mbps} = 444.4 \text{ Mbps} \Rightarrow \text{very inefficient}\)
 \(\Rightarrow \text{very low compared to channel capacity}\)
Throughput

- Stream of packets – 1 Mbps channel
Throughput

- Single packet - 1 Gbps channel