Programming in C++: Assignment Week 3

Total Marks : 20

August 6, 2017

Question 1

What is the output of the sizeof operator for 't' in the following code snippet? (Assume sizeof(int) = 4) *Mark 1*

```cpp
#include<iostream>
using namespace std;

class Test {
    int var;
    int arr[9];
    void display() { int a;}
};

int main() {
    Test t;
    cout << sizeof(t) << " ";
}
```

a) 40
b) 36
c) 44
d) Default size: 0

Answer: a)

Explanation: Sum of memory requirements for all the data members

Question 2

What will be the output of the following program? *Mark 1*

```cpp
#include<iostream>
using namespace std;

class Sample {
    int data_;
    Sample(): data_(2){}
};

int main() {
```
Question 3

What is the output of the program? Mark 1

```cpp
#include<iostream>
using namespace std;
class Test {
    private:
        int x_; 
        int y_; 
    public:
        void func() {
            x_ = y_ = 1;
            cout << x_ << " " << y_; 
        }
}; 

int main() {
    Test t;
    t.func(); 
}
```

a) 1 1
b) Compilation error: Constructor not defined

c) Compilation error: Cannot access private member x_ and y_

d) Compilation error: Illegal access of func()

Answer: a)
Explanation: private members can be accessed in public methods

Question 4

Consider Object S of class Sample. What is the type of this pointer? Mark 1

a) S const * const this

```cpp
Sample s;
s.data_ = 1;
cout << Sample.data_;
}
```

a) 1
b) 2
c) Compilation Error: Sample() is private
d) 0

Answer: c)
Explanation: Constructor is private, hence object construction not possible
b) S * const this

c) S * this

d) const S const * this

Answer: b)
Explanation: As per syntax of this pointer

Question 5

What will be the output of the program? *Mark 2*

```cpp
#include <iostream>
#include <string>
using namespace std;

class Sample {
    string name;

public:
    Sample(string s): name(s) {
        cout << name << " Created" << " ";
    }

    ~Sample() {
        cout << name << " Destroyed" << " ";
    }
};

int main() {
    Sample s1("s1"), s2("s2");

    return 0;
}
```

a) S1 Created S2 Created S2 Destroyed S1 Destroyed
b) S1 Created S2 Created S1 Destroyed S2 Destroyed
c) S2 Created S1 Created S2 Destroyed S1 Destroyed
d) S1 Created S1 Destroyed S2 Created S2 Destroyed

Answer: a)
Explanation: order of calling constructors and destructors, when the object goes out of scope. The last constructed class is destroyed first. See Slides.
I Programming Assignment

Question 1

Fill the blank with the proper constructor and copy constructor to get the output as per the test cases. Marks 2

```cpp
#include <iostream>
using namespace std;
class Complex {
    public: double *re, *im;
    Complex(__________________) {
        re = new double(r);
        im = new double(m);
    }
    Complex(__________________ ){
        re = new double; im = new double;
        *re = *t.re; *im= *t.im;
    }
    ~Complex(){
        delete re, im;
    }
};

int main() {
    double x, y, z;
    cin >> x >> y >> z;
    Complex n1(x,y);
    cout << *n1.re << "+" << *n1.im << "i ";
    Complex n2 = n1;
    cout << *n2.re << "+" << *n2.im << "i ";
    *n1.im = z;
    cout << *n2.re << "+" << *n2.im << "i ";
    cout << *n1.re << "+" << *n1.im << "i ";
    return 0;
}
```

Answer: double r, double m // const Complex &t
Explanation: The first parameters are for the constructor, the second arguments are for the copy constructor which passes a constant Complex object, so that the value of the data members are not changed.

a. Input: 4, 5, 6 Output: 4+5i 4+5i 4+5i 4+6i
b. Input: 4, 5, 5 Output: 4+5i 4+5i 4+5i 4+5i
c. Input: 6 7 8 Output: 6+7i 6+7i 6+7i 6+8i
Question 2

Fill the blank in the constructor to get the output as per the test cases. *Marks 2*

```cpp
#include <iostream>
using namespace std;

class Sample {
    public:
        int data_; 
        char graph_, data_or_graph_; 
        Sample(int data_, char graph_, char data_or_graph_): data_(data_), data_or_graph_(data_or_graph_), graph_(graph_){
            cout << data_ << " " << data_or_graph_<< " " << graph_ <<" " <<endl; 
        }
};

int main() {
    int x; char y;
    cin>>x >> y ;
    Sample s1(x, y), s3;

    return 0;
}
```

Answer: int x = 6, char z = 'C', char p = 'A'/ data_(x), data_or_graph_.(z), graph_(p)

Explanation: Evaluation of S3 gives 6 C A hence we get the default values. The rest of the syntax is as per slides.

a. Input: 4 D Output: 4 D A 6 C A
b. Input: 71 N Output: 71 N A 6 C A

Question 3

Fill in blank with proper access specifier and function definitions of the class Stack to get the output as per the test cases. *Marks 2*

```cpp
#include <iostream>
#include <vector>
#include<string.h>
using namespace std;

class Stack {
    // Write the appropriate Access specifier
    vector<char> data_; int top_;
    public:
        int empty() { _______________; }
        void push(char x) { _______________; }
        void pop() { _______________; }
        char top() { _______________; }
};

int main() {
    Stack s;
```
char str[20];

cin >> str;

s.data_.resize(100);
s.top_ = -1;
for(int i = 0; i < strlen(str) ; ++i)
s.push(str[i]);
while (!s.empty()) {
 cout << s.top(); s.pop(); s.pop();
}
return 0;
}

Answer: public // return (top_ == -1) // data_[++top_] = x // -top_ // return data_[top_]
Explanation: Access specifier will be public as the data members are accessed outside class.

The functions are standard stack functions, refer slides

a. Input: erty Output: yr
b. Input: ghjilk Output: kih

c. Input: ADAM ; Output: MD

Question 4

Look into the main() function write the proper constructor by filling the blank to get the output as per the test cases. Marks 2

#include <iostream>
#include <cmath>
using namespace std;
class Complex { private: double re_, im_;
public:
Complex(double re = 4.0, double im = 5.0): re_(re), im_(im)
{ cout << "Ctor: (" << re_ << ", " << im_ << ")" << endl; }
~Complex()
{ cout << "Dtor: (" << re_ << ", " << im_ << ")" << endl; }

 void print() { cout << "|" << re_ << "+j" << im_ << "| " << endl; }
};
--------------------;
int main() {
 cout << "main" << endl;
double x, y;

 cin >> x;
 cin >> y;
 Complex d(x); Complex e;
c.print();
d.print();
return 0;
}
Answer: Complex c(8, 4)

Explanation: Complex object defined before the scope of main

a. Input: 5 6

Output

Ctor: (8, 4)

main

Ctor: (5, 5)
Ctor: (4, 5)
|8+j4|
|5+j5|
Dtor: (4, 5)
Dtor: (5, 5)
Dtor: (8, 4)

b. Input: 2.5 3.5;

Output

Ctor: (8, 4)

main

Ctor: (2.5, 5)
Ctor: (4, 5)
|8+j4|
|2.5+j5|
Dtor: (4, 5)
Dtor: (2.5, 5)
Dtor: (8, 4)

Question 5

The program indicates the concept of mutability. Fill the blank with appropriate keywords to satisfy the given test cases.

```
#include <iostream>
using namespace std;

class MyClass {
    int mem_;  
    __________ int x_;  
    public:
    MyClass(int m, int mm) : mem_(m), x_(mm) {}  
    int getxMem() _________ { return x_; }  
    void setxMem(int i) __________ { x_ = i; }  
};

int main() {
    int x, y, z;
    cin >> x;
    cin >> y;
```
cin >> z;
const MyClass myConstObj(x, y);
myConstObj.setMem(z);
cout << myConstObj.getMem() << endl;
return 0;

Answer: mutable // const // const
Explanation: A mutable data member x only can be accessed and updated in a const member function.

a. Input: 5 7 8 ; Output: 8
b. Input: 0, 1, 0 ; Output: 0
c. Input: 11, 11, 11 ; Output: 11