Assignment 8

1) Which of the following statements are false?

- If $P \neq NP$ then $Clique \notin P$
- If $P = NP$ then $Clique \in P$
- $4SAT \leq_p 3SAT$
- $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$ then $L_3 \leq_p L_1$

Accepted Answers:
If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$ then $L_3 \leq_p L_1$

2) Which of the following statements are implied by $Clique \leq_p Clique$?

- $NP = coNP$
- $NP \neq coNP$
- $SAT \leq_p Clique$
- $Clique \leq_p SAT$

Accepted Answers:
$NP = coNP$
$SAT \leq_p Clique$
$Clique \leq_p SAT$

3) Let L_1 and L_2 be two NP languages. Which of the following are known to be true?

- $L_1 \cup L_2 \in NP$
- $L_1 \cap L_2 \in NP$
- $L_1 \cdot L_2 \in NP$

https://onlinecourses.nptel.ac.in noc17_cs34/unit?unit=66&assessment=96
2 points

4) Consider the following statements

\(S_1 : \text{If } L_1 \leq_p L_2 \text{ and } L_1 \text{ is an NP complete problem then } L_2 \text{ is also an NP complete problem} \)

\(S_2 : \text{If } P = NP \text{ then } NP = coNP \)

Which of the following are correct?

- \(S_1 \) is true but \(S_2 \) is false
- \(S_2 \) is true but \(S_1 \) is false
- Both \(S_1 \) and \(S_2 \) are true
- Both \(S_1 \) and \(S_2 \) are false

Accepted Answers:

\(S_2 \) is true but \(S_1 \) is false

2 points

5) Consider the following languages

\(L_1 = \{ x \mid x \text{ is a palindromic binary string} \} \)

\(L_2 = \{ x \mid x \text{ is a binary string whose decimal representation is an even number} \} \)

We define \(DTIME(2^n), DTIME(n) \) and \(DTIME(c) \) to be the class of languages which can be decided in exponential, linear and constant time respectively. Which of the following are true?

- \(L_1 \in DTIME(c) \)
- \(L_1 \in DTIME(n) \) and \(L_1 \notin DTIME(c) \)
- \(L_2 \in DTIME(n) \)
- \(L_2 \in DTIME(2^n) \) and \(L_2 \notin DTIME(n) \)

Accepted Answers:

\(L_1 \in DTIME(n) \) and \(L_1 \notin DTIME(c) \)

\(L_2 \in DTIME(n) \)

6) Which of the following languages about encodings of TMs are decidable?

- \(\{ < M > \mid L(M) \text{ has odd number of strings} \} \)
- \(\{ < M > \mid L(M) \text{ has odd length strings} \} \)
- \(\{ < M > \mid \overline{A_{TM}} \leq_{m} L(M) \} \)

Accepted Answers:

- \(\{ < M > \mid L(M) \text{ has odd number of strings} \} \)
- \(\{ < M > \mid L(M) \text{ has odd length strings} \} \)
- \(\{ < M > \mid \overline{A_{TM}} \leq_{m} L(M) \} \)
7) Consider the following languages
\[L_1 = \{ <M, x> | M \text{ is a single tape TM whose input head reaches the } k \text{th cell on input } x \} \]
\[L_2 = \{ <M> | M \text{ is a single tape TM whose input head reaches the } k \text{th cell on every input} \} \]
Which of the following is true?

- \(L_1 \) is decidable but \(L_2 \) is undecidable
- \(L_1 \) is undecidable but \(L_2 \) is decidable
- Both \(L_1 \) and \(L_2 \) are decidable
- Both \(L_1 \) and \(L_2 \) are undecidable

\text{Accepted Answers:}
\text{Both } L_1 \text{ and } L_2 \text{ are decidable}

8) Consider the following languages
\[L_1 = \{ <M_1, M_2, x> | \text{at least one out of } M_1 \text{ and } M_2 \text{ halts on } x \} \]
\[L_2 = \{ <M_1, M_2, x> | \text{exactly one out of } M_1 \text{ and } M_2 \text{ halts on } x \} \]
Which of the following is true?

- \(L_1 \) is recognizable but \(L_2 \) is unrecognizable
- \(L_2 \) is recognizable but \(L_1 \) is unrecognizable
- Both \(L_1 \) and \(L_2 \) are recognizable
- Both \(L_1 \) and \(L_2 \) are unrecognizable

\text{Accepted Answers:}
\text{\(L_1 \) is recognizable but \(L_2 \) is unrecognizable}

9) Consider the following language about encoding of TMs
\[L = \{ <M> | M \text{ does not halt on every input} \} \]
Which of the following is correct?

- \(L \) is decidable
- \(L \) is recognizable but undecidable
- \(L \) is unrecognizable and \(\overline{L} \) is also unrecognizable
- \(L \) is unrecognizable but \(\overline{L} \) is recognizable
Accepted Answers:

L is unrecognizable but L' is recognizable