Assignment 7

1) Consider the following languages

\[L_1 = \{ <M> \mid M \text{ is a single tape TM that on any input } x \text{ does not change the input portion of the tape} \} \]

\[L_2 = \{ <M> \mid M \text{ is a single tape TM that on any input } x \text{ does not change any portion of the tape} \} \]

Which of the following is correct?

- \(L_1 \) is decidable but \(L_2 \) is undecidable
- \(L_1 \) is undecidable but \(L_2 \) is decidable
- Both \(L_1 \) and \(L_2 \) are decidable
- Both \(L_1 \) and \(L_2 \) are undecidable

Accepted Answers:

\(L_1 \) is undecidable but \(L_2 \) is decidable

2) Which of the following are correct?

- If \(L_1 \leq_m L_2 \) and \(L_2 \leq_m L_3 \), then \(L_1 \leq_m L_3 \)
- If \(L_1 \leq_m L_2 \) then \(L_2 \leq_m L_1 \)
- If \(L_1 \leq_m L_2 \) then \(\overline{L_1} \leq_m \overline{L_2} \)
- \(L \leq_m \overline{L} \)

Accepted Answers:

- If \(L_1 \leq_m L_2 \) and \(L_2 \leq_m L_3 \), then \(L_1 \leq_m L_3 \)
- If \(L_1 \leq_m L_2 \) then \(\overline{L_1} \leq_m \overline{L_2} \)

3) Consider the following language

\[L = \{ <M> \mid M \text{ is a TM such that if } M \text{ accepts } w \text{ then } M \text{ accepts } \overline{w} \text{ also} \} \]
Which of the following is correct?

- L is decidable
- L is recognizable but undecidable
- L is unrecognizable and \overline{L} is decidable
- L is unrecognizable and \overline{L} is undecidable

Accepted Answers:
L is unrecognizable and \overline{L} is undecidable

4) Let L_1 and L_2 be two languages such that $L_1 \leq_{\text{redu}} L_2$. Consider the following statements:

- S_1: If L_1 is non-regular then L_2 is also non-regular
- S_2: If L_1 is non-CFL then L_2 is also non-CFL

Which of the following is correct?

- S_1 is true but S_2 is false
- S_2 is true but S_1 is false
- Both S_1 and S_2 are true
- Both S_1 and S_2 are false

Accepted Answers:
Both S_1 and S_2 are false

5) Consider the following languages:

- $EQ(P_1, P_2) = \{ <P_1, P_2> | P_1$ and P_2 are pushdown automata such that $L(P_1) = L(P_2) \}$
- $EQN(D_1, D_2) = \{ <D_1, D_2> | D_1$ and D_2 are DFAs such that $|L(D_1)| = |L(D_2)| \}$

Which of the following is correct?

- $EQ(P_1, P_2)$ is decidable but $EQN(D_1, D_2)$ is not
- $EQN(D_1, D_2)$ is decidable but $EQ(P_1, P_2)$ is not
- Both $EQ(P_1, P_2)$ and $EQN(D_1, D_2)$ are decidable
- Both $EQ(P_1, P_2)$ and $EQN(D_1, D_2)$ are not decidable

Accepted Answers:
$EQN(D_1, D_2)$ is decidable but $EQ(P_1, P_2)$ is not

6) Consider the following languages:

$E(Q(P_1, P_2)) = \{ <P_1, P_2> | P_1$ and P_2 are pushdown automata such that $L(P_1) = L(P_2) \}$

$E(QN(D_1, D_2)) = \{ <D_1, D_2> | D_1$ and D_2 are DFAs such that $|L(D_1)| = |L(D_2)| \}$

Which of the following is correct?

- $E(Q(P_1, P_2))$ is decidable but $E(QN(D_1, D_2))$ is not
- $E(QN(D_1, D_2))$ is decidable but $E(Q(P_1, P_2))$ is not
- Both $E(Q(P_1, P_2))$ and $E(QN(D_1, D_2))$ are decidable
- Both $E(Q(P_1, P_2))$ and $E(QN(D_1, D_2))$ are not decidable

Accepted Answers:
$E(QN(D_1, D_2))$ is decidable but $E(Q(P_1, P_2))$ is not
Which of the following is correct?

- L_1 and L_2 both are decidable
- L_1 and L_2 both are recognizable but not decidable
- L_1 is recognizable but not decidable and L_2 is not recognizable
- L_1 is decidable and L_2 is recognizable but not decidable

Accepted Answers:
L_1 and L_2 both are decidable

7) Let L_1 and L_2 be two languages. If $L_1 \leq_m L_2$ and L_1 is Turing recognizable but not decidable, then which of the following are necessarily true?

- L_2 is Turing recognizable
- \overline{L}_2 is Turing recognizable
- L_2 is not Turing recognizable
- \overline{L}_2 is not Turing recognizable

Accepted Answers:
\overline{L}_2 is not Turing recognizable

8) Which of the following statements are false?

- Every subset of a decidable language is decidable
- Every superset of a decidable language is decidable
- Every subset of an undecidable language is undecidable
- Every superset of an undecidable language is undecidable

Accepted Answers:
Every subset of a decidable language is decidable
Every superset of a decidable language is decidable
Every subset of an undecidable language is undecidable
Every superset of an undecidable language is undecidable