Assignment 3

1) Let N be a NFA such that starting state of N is not an accepting state. What is the minimum length string that can accept

- Length of the shortest path from starting state to some accepting state
- $|Q| - 1$, Where Q is the set of states of N
- 1
- 0

Accepted Answers:

2) Consider the grammar G,

- $S \rightarrow AB$
- $A \rightarrow ab \mid ba \mid bb$
- $B \rightarrow aB \mid bB \mid C$
- $C \rightarrow aa \mid ab \mid ba \mid bb$

Which of the following string is generated by G?

- bababbab
- ababab
- aaabbbba
- babaa

Accepted Answers:

bababbab
aaabbbba
3) Consider the following DFA,

![Diagram of a DFA](https://example.com/dfa_diagram.png)

What will be number of states in minimum DFA, which accepts the same language as above DFA?

- 2
- 3
- 4
- 5

Accepted Answers: 4

4) Let L be a language. We define another language L' as follow

$$L' = \{w \mid w \text{ is binary equivalent of } 2^x, \text{ where } x \in L \text{ and consider } x \text{ as a binary number}\}$$

Which of the following is false?

- If L is regular then L' is also regular
- If L is regular then L' may not regular
- L' is always regular irrespective of L
- L' is always non-regular irrespective of L

Accepted Answers:

- If L is regular then L' is also regular
- L' is always regular irrespective of L
- L' is always non-regular irrespective of L

5) Consider the following languages,

- $L_1 = \{0, 1\}^*$
- $L_2 = \{w \mid w \text{ is binary equivalent of } 2^x, \text{ where } x \in L_1 \text{ and consider } x \text{ as a binary number}\} \cup \{0\}$
- $L_3 = L_2^*$

which of the following is regular?

- Only L_1
- Only L_1 and L_2
- Only L_1 and L_3
- All of them.

Accepted Answers:
All of them.

6) Let \(L = \{ w \mid w \text{ is a binary strings and contains equal number of occurrences of substring } 01 \text{ and } 10 \} \)

What is the minimum number of states in a DFA for \(L \)

- 4
- 5
- 6
- Can not construct a DFA for \(L \)

Accepted Answers:
5

7) What is the language accepted by following grammar ?

\[
S \rightarrow aS \mid bT \mid e \\
T \rightarrow aaT \mid bT \mid e \\
\]

- \((a+b)^* \)
- \(\{a^n b^{2n}, n \geq 0\} \)

All strings \(w \in (a+b)^* \), where \(w \) contains even number of \(a \)'s.

All strings \(w \in (a+b)^* \), where in \(w \) every \(b \) is followed by even number of \(a \)'s.

Accepted Answers:
All strings \(w \in (a+b)^* \), where in \(w \) every \(b \) is followed by even number of \(a \)'s.

8) Which regular expression describes the language generated by the following grammar?

\[
S \rightarrow aSb \mid e \\
S \rightarrow aA \mid bB \\
A \rightarrow aA \mid bB \mid e \\
B \rightarrow bB \mid aA \mid e \\
\]

- \(a^n (a+b)^* b^n \), where \(n > 0 \).
- \(a^n (a+b)^* b^n \), where \(n \geq 0 \).
- \((a+b)^* \)
- \(\{a^n b^n, n \geq 0\} \)

Accepted Answers:
\(a^n (a+b)^* b^n \), where \(n \geq 0 \).
\((a+b)^* \)