Assignment 2

1) Which of following is true?

- Every NFA is a set of some DFAs
- NFA is a 6 tuple
- Every DFA is an NFA
- Every NFA is a DFA

Accepted Answers:
Every DFA is an NFA

2) Which of following is true?

- A language accepted by a DFA is also accepted by some NFA and vice-versa
- A language accepted by an NFA is also accepted by some DFA but not vice-versa
- DFA is 5-tuple but not NFA
- A language accepted by a DFA is also accepted by some NFA but not vice-versa

Accepted Answers:
A language accepted by a DFA is also accepted by some NFA and vice-versa

3) Which of following is true?

- A language accepted by a regular expression is also accepted by some NFA and some DFA.
- A language accepted by a regular expression is also accepted by some NFA but not necessarily accepted by a DFA.
- A language accepted by a regular expression is may not be accepted by any NFA or DFA.
- A language accepted by a regular expression is accepted by some DFA but not necessarily accepted by an NFA.

Accepted Answers:
A language accepted by a regular expression is also accepted by some NFA and some DFA.

4) Regular languages are closed over

- concatenation
- union

1 point
29/12/2017 Theory of computation - - Unit 3 - Week - 2

Accepted Answers:

- union
- intersection
- complement
- concatenation

5) Which of following is true?

- For every regular language there exists a GNFA with atmost 2 states that accepts the language
- Every GNFA can be converted to a regular expression such that both accept same language
- Every DFA cannot be converted to a regular expression such that both accept same language
- Every NFA can be converted to a regular expression such that both accept same language

Accepted Answers:

- Every GNFA can be converted to a regular expression such that both accept same language
- Every NFA can be converted to a regular expression such that both accept same language
- For every regular language there exists a GNFA with atmost 2 states that accepts the language

6) What is the language accepted by following regular expression?

- $0^*(1(01^*0)^1)*0^*$

- Binary representation of multiples of 6
- Binary representation of multiples of 4
- Binary representation of multiples of 3
- Binary representation of multiples of 2

Accepted Answers:

- Binary representation of multiples of 6

7) What is the language accepted by following NFA?

- Strings with atleast one 1 in it
- Complement of language accepted by regular expression 0^*
- Language accepted by regular expression 0^*10^*
- Strings with exactly one 1 in it

Accepted Answers:

- Complement of language accepted by regular expression 0^*
- Strings with atleast one 1 in it

8) $NOPREFIX(L) = \{w \in L \mid \text{no prefix of } w \text{ is in } L\}$. Which of following are true?

- $NOPREFIX(L)$ is regular
- $NOPREFIX(L)$ is context-free
- $NOPREFIX(L)$ is context-sensitive
- $NOPREFIX(L)$ is recursively enumerable

https://onlinecourses.nptel.ac.in/noc17_cs34/unit?unit=15&assessment=78
For any regular language \(L \), \(NOPREFIX(L) \) is not regular.

For some regular language \(L \), \(NOPREFIX(L) \) are not regular.

For some regular languages \(L \), \(NOPREFIX(L) \) is regular but not all.

Regular languages are closed under \(NOPREFIX \).

Accepted Answers:

Regular languages are closed under \(NOPREFIX \).

9) \(DROP\-ONE(L) = \{xz \mid xyz \in L \text{ where } x, z \in \Sigma^* \text{ and } y \in \Sigma \} \). Which of following are true?

- Regular languages are closed under \(DROP\-ONE \).
- For any regular language \(L \), \(DROP\-ONE(L) \) is not regular.
- For some regular language \(L \), \(DROP\-ONE(L) \) are not regular.
- For some regular languages \(L \), \(DROP\-ONE(L) \) is regular but not all.

Accepted Answers:

Regular languages are closed under \(DROP\-ONE \).