Solution 1:

Correct Answer: B,D
Explanation:
By Rice’s theorem, L_1 and L_3 are undecidable. L_2 is the set of all strings and L_3 can be decided by counting the number of states in the description of Turing machine.

Solution 2:

Correct Answer: D
Explanation:
By Rice’s Theorem, L_1, L_2 and L_3 are undecidable. L_4 is the set of all strings over some alphabet and hence decidable.

Solution 3:

Correct Answer: C
Explanation:
Every language in P has a deterministic polynomial time algorithm, and since P is a subset of NP, it follows that there are languages in NP which have a deterministic polynomial time algorithm. Therefore option A is wrong.

Every language in P will have a non-deterministic polynomial time algorithm since P is subset of NP. Option B is hence wrong.

Since $P \subseteq NP$, if $NP \subseteq P$ were to be true, it would follow that $P = NP$ contradicting our assumption. Hence Option C is correct.

Option D is wrong since $P \subseteq NP$.

Solution 4:

Correct Answer: B
Explanation:
Since, there can be decidable languages not in NP, A is incorrect.
Languages which are in NP can be decided in polynomial time. Hence B is correct option.

The halting problem is an NP-hard language and undecidable. Hence C is incorrect.

Option D is not correct because there are decidable NP-hard languages which are not NP-complete.

Solution 5:

Correct Answer: A,B,C
Explanation:
Claim: If $SAT \leq_p \overline{SAT}$ then $NP \subseteq \text{co-NP}$

Proof. Let $L \in NP$. Since $SAT \leq_p \overline{SAT}$, as assumed, $L \leq_p \overline{SAT}$. By definition of reduction, this implies $\overline{L} \leq_p SAT$. Hence $\overline{L} \in NP$. Therefore, $L \in \text{co-NP}$.

Claim: If $SAT \leq_p \overline{SAT}$ then $co-NP \subseteq NP$

Proof. Let $L \in co-NP$. So, $\overline{L} \in NP$. Since $SAT \leq_p \overline{SAT}$, as assumed, $\overline{L} \leq_p \overline{SAT}$. By definition of reduction, this implies $L \leq_p SAT$. Hence $L \in NP$.

By above claims, it follows that if $SAT \leq_p \overline{SAT}$ then $NP = \text{co-NP}$. Therefore, option A is correct.

If $NP = \text{co-NP}$, then $\overline{SAT} \leq_p SAT$ (Since every language in NP is polynomial time reducible to SAT). This implies that $SAT \leq_p \overline{SAT}$. Hence option B is correct.

It is known that P is subset of NP. The complement of P is also in P. (We simply reverse the acceptance and rejections) Hence P is also a subset of co-NP. Therefore $P \subseteq NP \cap \text{co-NP}$. Hence option C is correct.
It is unknown whether $NP \cap co-NP = P$. Hence D is incorrect.

Solution 6:

Correct Answer: A,B,D
Explanation: L is NP-complete. This implies that L is both NP-hard and in NP. Since L is an NP-hard language, every language in NP, including SAT is reducible in polynomial time to L. Hence A is correct. Since L is in NP, it is reducible to SAT, which is NP-hard. Hence options A, B and D are correct. C is incorrect because, if it were to be correct, it would imply that every language in NP is NP-hard. This is not known to be true.

Solution 7:

Correct Answer: C
Explanation: We take prime factors of n along with their multiplicity as a certificate. The verifier simply checks whether the given factors are valid (i.e. they are indeed prime factors of n) and if anyone of them is smaller than m. This puts the language in both NP and co-NP.

Solution 8:

Correct Answer: B,C
Explanation: The class of NP languages is closed under union and intersection. This is so because to decide $L_1 \cup L_2$ we can run the turing machines for L_1 and L_2 in parallel and accept if any one of them accepts. To decide $L_1 \cap L_2$, we accept if both of them accepts. It follows that both the above mentioned languages are in NP. We can also decide L_1^* by first non-deterministically guessing the length of string checking whether it belongs to L_1. We do this repeatedly until we encounter a blank in input tape. Hence option A and D are incorrect. Since the complement of languages mentioned in option B and C are in NP, and it is not necessarily true that $NP = co-NP$, we have option B and C as correct answers.

Solution 9:

Correct Answer: C
Explanation: It is known that P is subset of NP. The complement P is also in P. (We simply reverse the acceptance and rejections) Hence P is also a subset of co-NP. Therefore $P \subseteq NP \cap co-NP$. Every language in NP and co-NP are decidable. However, halting problem is an undecidable language which is Turing recognizable. Hence option C is correct.