1) Let \(N \) be an NFA and \(w \) be a string. We say that \(N \) accepts \(w \), if
- all computation paths of \(N \) on \(w \) reach an accept state,
- exactly one computation path of \(N \) on \(w \) reaches an accept state,
- no computation path of \(N \) on \(w \) reaches an accept state,
- at least one computation path of \(N \) on \(w \) reaches an accept state.

2) Let \(\cdot \) and \(\cup \) be the concatenation and union operation as discussed in the lectures. Let \(A \) and \(B \) be two finite languages with cardinality (number of strings in the language) \(p \) and \(q \) respectively. Then what is the maximum number of strings in languages \(A \cdot B \) and \(A \cup B \) respectively?
- \(p^q \) and \(p \cdot q \)
- \(p^p \) and \(p + q \)
- \(p^q \) and \(p + q \)
- \(p \cdot q \) and \(p \cdot q \)

3) Consider the DFA \(M \) given below:

![DFA Diagram]

If \(L_1 \) = \{Set of binary strings when interpreted as integer is divisible by 3\}
\(L_2 \) = \{Set of binary strings whose reversal when interpreted as integer is divisible by 3\}

Which one of the following is correct?
- \(L_1 = L(A) \) but \(L_2 \neq L(A) \)
- \(L_1 \neq L(A) \) but \(L_2 = L(A) \)
- \(L_1 = L(A) \) and \(L_2 = L(A) \)
- \(L_1 \neq L(A) \) and \(L_2 \neq L(A) \)

4) What is the minimum number of states in a DFA that recognizes the set of all binary strings which contains four consecutive 1s?
- 6
- 5
- 4
- 3
6) Consider the following DFA:

Which one of the following is the language of the above DFA?
- Set of all binary strings which do not contain 101.
- Set of all binary strings which do not contain exactly two 1s.
- Set of all binary strings which do not contain at least two 1s.
- Set of all binary strings which do not contain at least two 1s separated by at least one 0.

6) Let Q be the number of states in an NFA N. From any state in N, on reading an input symbol, N can go to
- At most $Q-1$ states.
- At least $Q-1$ states.
- At most Q states.
- At least 2 states.

7) Let L be a language and D be a DFA such that $L = L(D)$. Which of the following statement is necessarily true?
- There exists only one DFA which accepts L.
- There exists only finitely many DFAs which accept L.
- There exists an NFA which accepts L.
- There exists infinitely many DFAs which accept L.
8) Which of the following is true?
 - Every NFA is also a DFA.
 - Every DFA is also an NFA.
 - There are some DFA which are not an NFA.
 - None of the above.

9) What is the language of the following NFA?

 - Set of all strings which contains aa or bb as a substring.
 - Set of all string which contains aa or bb as a substring but not both.
 - Set of all string which contains aa as a substring.
 - Set of all string which contains bb as a substring.
10) Let \(A \) and \(B \) be two sets of binary strings. A string in \(A \) when interpreted as an integer is divisible by 2 and a string in \(B \) when interpreted as an integer is divisible by 3. Let \(. \) be the concatenation operation. Which of the following is false?

- A string in \(A.B \) when interpreted as an integer is divisible by 5.
- A string in \(B.A \) when interpreted as an integer is divisible by 5.
- At least one of \(A.B \) and \(B.A \) is the set of strings which when interpreted as integer is divisible by 6.
- There exists such \(A \) and \(B \) such that, strings in \(A.B \) and \(B.A \) when interpreted as an integer is divisible by 6.

11) What is the language of the following DFA?

- Set of all strings \(s \), such that \(s \) contains substrings consist of all \("a" \), separated by a single \("b" \).
- Set of all string which does not contain substring \("aa" \).
- Set of all string which does not contain substring \("aa" \) and ending with an \("a" \).
- None of the above.

12) Let \(\Sigma = \{0, 1\} \) Which of the following words are in the language \(\Sigma^2 \)?

- 00
- 0011
- 0101
- 01