NPTEL Course on

Human Computer Interaction
- An Introduction

Dr. Pradeep Yammiyavar
Professor,
Dept. of Design,
IIT Guwahati,
Assam, India

Dr. Samit Bhattacharyya
Assistant Professor,
Dept. of Computer Science and Engineering,
IIT Guwahati, Assam, India

Indian Institute of Technology Guwahati
Module 2: Interactive System Design

Lecture 1: Concept of Usability Engineering - an overview

Dr. Pradeep Yammiyavar
Outline of Usability Engineering

• The need for usability
• What do usability and UE mean?
• What happens without UE?
• UE lifecycle
• User-Centered Design Methodology (UCD)
Usability Engineering

• Xristine Faulkner (2000): defines it as follows

 “UE is an approach to the development of software and systems which involves user participation from the outset and guarantees the usefulness of the product through the use of a usability specification and metrics.”

• UE thus refers to the USABILITY FUNCTION aspects of the entire process of conceptualising, executing & testing products (both hardware as well as software), from requirements gathering stage to installation / marketing & testing of their use.
Definition of usability

- **Usability** is the effectiveness, efficiency and satisfaction with which users achieve specific goals in particular environments; where

 - **Effectiveness** is the accuracy and completeness with which specified users can achieve specified goals in particular environments;
 - **Efficiency** is the resources expended in relation to the accuracy and completeness of goals achieved; and
 - **Satisfaction** is the comfort (experience) and acceptability of the work system to its users and other people affected by its use.

User’s Definition of Usability

USABILITY : The ability of a User to Use the product/system/environment as desired
Usability Engineering: The ‘affordance’ offered by a product that makes it useable.

Usability does not happen by itself. It has to be “engineered” into the product.
Usability is related to **Human performance**

Intuitiveness
Maximum success for first-time users, with minimum training, explanation or thought

Efficiency
Maximum success for long-term users, with minimum time, mental load, physical effort

Usability is conceptualised into the product by **DESIGN**

Usability has three major components in Design:
- **Appearance**
 Visual Quality
- **Technology**
 Build Quality
- **Interaction**
 Use Quality

Capabilities
Limits
Consequences
Some definitions

- ‘Usability’ is the measure of the quality of a User’s experience when interacting with a product or system.

- ‘Usability Engineering’ is the processes of deriving, specifying, measuring, constructing and evaluating usability features into products and systems.

- **Usability Study** is the systematic analysis based on heuristics and/or experimental evaluation of the interaction between people and the products including the environment of use.

 Psychology/ Cognitive Sc/ Behavioral Sc

- **Usability Testing** is the scientific verification of the specified usability parameters with respect to the Users needs, capabilities, expectations, safety & satisfaction.

Usability as applied to Product Design
Usability as applied to Human Computer Interaction
Usability as applied to Human Environment Interaction
Usability as applied to Systems (including Engineering systems)
The UE lifecycle

Design Stages

<table>
<thead>
<tr>
<th>Task</th>
<th>Information produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowing the user</td>
<td>User characteristics, User background</td>
</tr>
<tr>
<td>Knowing the task</td>
<td>User’s current task, Task analysis</td>
</tr>
<tr>
<td>User requirements</td>
<td>User requirements specification</td>
</tr>
<tr>
<td>Setting usability goals</td>
<td>Usability specification</td>
</tr>
<tr>
<td>Design process</td>
<td>Design Specification</td>
</tr>
<tr>
<td>HCI Guidelines & heuristic analysis</td>
<td>Feedback for design iteration</td>
</tr>
<tr>
<td>Prototyping</td>
<td>Prototype for user testing</td>
</tr>
<tr>
<td>Evaluation with users</td>
<td>Feedback for freezing design</td>
</tr>
<tr>
<td>Redesign and evaluate with users</td>
<td>Finished product</td>
</tr>
<tr>
<td>Evaluate with users and report</td>
<td>Feedback on product for future systems</td>
</tr>
</tbody>
</table>

UCD Methods (ISO 13407)

<table>
<thead>
<tr>
<th>SYSTEM LIFE CYCLE</th>
<th>FEASIBILITY</th>
<th>REQUIREMENTS</th>
<th>DESIGN</th>
<th>IMPLEMENT</th>
<th>RELEASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER REQs</td>
<td>CONTEXT OF USE</td>
<td>FUNCTIONAL</td>
<td>TECHNICAL</td>
<td>PROTOTYPE</td>
<td>USEABILITY TESTING</td>
</tr>
</tbody>
</table>

| Design Stages | Information produced |
The goals of Usability Engineering

5 Es

- Effective to use
- Efficient to use
- Error free in use
- Easy to use
- Enjoyable in use

Achieves 5 times Enhancement in Engineering value.
ISO 13407, 1999

“Human-centered design is an approach to interactive system development that focuses specifically on making systems usable. It is a multi-disciplinary activity.”

• UE is based on a User-Centered Design (UCD) approach to analysis and design. It concentrates on those aspects of products & services that have a bearing on their effective, efficient & pleasurable USE by humans.
The UCD Methodology.
User centered design processes: UCD

- Design brief & constraints
- User need analysis
 - User requirements
 - User goals
 - User tasks
- System specification
- Build prototype
- Test Prototypes
- Analyze data
- Refine design
- Evaluate design
- Deliver product
- Support product

Software Development
Definition of UE & other Related fields

HCI: Human Computer Interaction is a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them. *ACM - Association for Computing Machinery.*

Human Factors & Ergonomics: Stress on human physical issues (physiology) and on optimising work processes.

User Interface Design: Focuses on interface layer assuming all deeper functions are fixed.

HCD - Human Centered Design: Approaches to software engineering with user focus at all stages of software design.

ID - Interaction Design: wider scope in terms of devices beyond computers. More emphasis on cognitive & experiential factors.

UE - Usability engineering: Focuses on design & implementation processes. It is essentially research & design based activity. There are overlaps in the above fields. Each is independent. UE has all of them.
Relationship between UE & Human Computer Interaction; Interaction Design; Experience Design; GUI Design

\[UE = \{ UX + UI + ID + HCI \} \]

UX = User Experience
UI = User Interface
ID = Interaction design
HCl = Human Computer Interaction
UE = Usability Engineering

Please note: UE is written as ‘Usability’ and ‘Useability’. Both are valid.
UE vs Software Engineering

• Key difference (Karat and Dayton, 1995):
 – “In most cases of the design and development of commercial software, usability is not dealt with at the same level as other aspects of SE, (e.g.
 • Clear usability objectives are not set; and
 • Resources for appropriate activities are not given priority by project management).”

• To produce usable interactive products requires (Mayhew, 1999):
 – UI design principles and guidelines.
 – Structured methods for achieving usability.
Usability Testing & UE – the difference

• Usability engineering
 – Methodical approach to producing user interface + Experience + function + aesthetics
 – A way to deliver a product that works

• Usability Testing
 – Part of process of UE
 – Real users performing real tasks
Usability Testing

• Analytical evaluation:
 – By simulating *how* the user’s activity will be performed.
 – Heuristic evaluation measures design against a list of usability factors.

• Empirical evaluation:
 – By building and testing a *prototype*.
 – Formal usability testing tests a component of the design under controlled conditions - actual users.
 – Formal usability testing requires a usability laboratory.
Cost-justifying usability

$1 spent on usability = $10 saved (Nielsen, 1993).

Rs. 50 spent saves Rs 500 worth of trouble shooting due to poor design

<table>
<thead>
<tr>
<th>Ignoring UE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frustrated users</td>
</tr>
<tr>
<td>Low productivity</td>
</tr>
<tr>
<td>Poor user interface</td>
</tr>
<tr>
<td>design is the cause</td>
</tr>
<tr>
<td>High costs</td>
</tr>
<tr>
<td>Support/Help desk costs</td>
</tr>
<tr>
<td>Entering data incorrectly</td>
</tr>
<tr>
<td>Deleting data</td>
</tr>
<tr>
<td>Loss of market share,</td>
</tr>
<tr>
<td>good will</td>
</tr>
<tr>
<td>Competitors rush in.</td>
</tr>
</tbody>
</table>

Mobile / Tablet / Device companies now are heavily investing in UE as the value adder as well as product differentiator.

They do not consider ‘cost’ as a constraining factor as far as UE is concerned.
Evolution of HCI and understanding of Users

- User as 'cog' in the system – (1970's)
- User a source of error (80's),
- User a social actor (90's)
- User as a consumer now (2000's)

Previous approaches are insufficient

- When user is a consumer, his needs need to be understood in order for the product to stay in the market....

- User experience with interactive products start determining which ones will sell.

The UE processes is based on **four fundamental axioms of Design**

- User is the only constant entity of an artificially created system.
- User is the starting point of all design
- User is the final datum of reference for all design decisions
- User is the measure of all things.

Ref: Pradeep Yammiyavar; Industrial design of Electronic Equipment; IMPACT, IISC 1998
Nielsen (1993) identified five attributes that contribute to usability:

- **Learnability.** The user should be able to promptly start performing their tasks with the system.

- **Efficiency.** Once the user has learned the system, a high level of productivity should be possible.

- **Memorability.** The casual user should be able to return to the system after not having used it for some time, without having to relearn everything.

- **Errors.** Users should not make many errors using the system, and if they do, they should be able to easily recover from them. Catastrophic errors should not occur.

- **Satisfaction.** Users should like using the system and should be subjectively satisfied when using it. The system should be pleasant to use.
Digging Deeper into Usability
What makes a product usable?
Is it all subjective?…… can we measure Usability?

Stanton & Barber 1996 proposed measuring the following:
- Learnability
- Effectiveness
- Attitude
- Flexibility
- Compatibility

Learnability: A product/system should allow users to reach acceptable levels of competency/performance within a specified time.

- Help the users to master the system
- Let the users have to learn only once
- Build on users' prior knowledge
- Respect established cultural and application specific conventions
- Make objects and controls intuitive
- Provide easy access to ‘help’ resource

‘Intuitive’ User Interfaces do not require investing resources in ‘Learning’. Such interfaces follow the User’s Mental Model of Interaction.
Designing User Interface for Mobiles / Tablets

What is involved in GUI design?

- Designing for ease of use
 - Usability: Semantics, Dialogue, Communication Mental Models
- Designing for attractiveness
 - Aesthetics
- Designing for contextual awareness
 - User Experiences
 - Culture, Behavior

Technological feasibility is different from Usability.

Engineering / Software should not dictate usability.
Around the world **Usability Engineering** is becoming a recognised discipline with established practices and standards.

The usability professional association- USA was formed in 1991. There are active UE groups in India such as Indiachi / hcidc / useabilityorg.

The Usability Engineering lab at IITG was the first UE Research lab established in Indian educational institution. Since 2003 & upto 2013 - IITG has trained over 200 UE /UI/ GUI/HCI Designers.

The Knowledge Base for UE rests on the following science:

Cognitive Science
Physiology
Psychology
Sociology
Ethnography
Anthropology
Ergonomics
Design sciences
Engineering Sciences : Computer Science, Information Communication Technology
Some Usability Books

Assignment

Usability Evaluation

Conduct a quick Usability evaluation of your mobile phone & compare it with the evaluation of your friend's phone.

Effective to use - Functional
Efficient to use - Efficient
Error free in use - Safe
Easy to use - Friendly
Enjoyable in use - Pleasurable

Rating out of 10

Total: