Integer Programming

Mixed Integer Linear Programming
Objectives

- To discuss about the Mixed Integer Programming (MIP)
- To discuss about the Mixed Integer Linear Programming (MILP)
- To discuss the generation of Gomory constraints
- To describe the procedure for solving MILP
Introduction

- **Mixed Integer Programming:**
 - Some of the decision variables are real valued and some are integer valued

- **Mixed Integer Linear Programming:**
 - MIP with linear objective function and constraints
 - The procedure for solving an MIP is similar to that of All Integer LP with some exceptions in the generation of Gomory constraints.
Generation of Gomory Constraints

- Consider the final tableau of an LP problem consisting of n basic variables (original variables) and m non basic variables (slack variables).
- Let x_i be the basic variable which has integer restrictions.
From the i^{th} equation,

$$x_i = b_i - \sum_{j=1}^{m} c_{ij} y_j$$

Expressing b_j as an integer part plus a fractional part,

$$b_i = \bar{b}_i + \beta_i$$

Expressing c_{ij} as $c_{ij} = \bar{c}_{ij}^+ + \bar{c}_{ij}^-$ where

$$\bar{c}_{ij}^+ = \begin{cases} c_{ij} & \text{if } c_{ij} \geq 0 \\ 0 & \text{if } c_{ij} < 0 \end{cases}$$

$$\bar{c}_{ij}^- = \begin{cases} 0 & \text{if } c_{ij} \geq 0 \\ c_{ij} & \text{if } c_{ij} < 0 \end{cases}$$
Thus,

\[\sum_{j=1}^{m} (c_{ij}^+ + c_{ij}^-) y_j = \beta_i + (\overline{b_i} - x_i) \]

Since \(x_i \) and \(\overline{b_i} \) are restricted to take integer values and also \(0 < \beta_i < 1 \) the value of \(\beta_i + (\overline{b_i} - x_i) \) can be \(\geq 0 \) or \(< 0 \)

Thus we have to consider two cases.
Case I: $\beta_i + (\bar{b}_i - x_i) \geq 0$

- For x_i to be an integer,

 $\beta_i + (\bar{b}_i - x_i) = \beta_i \text{ or } \beta_i + 1 \text{ or } \beta_i + 2, \ldots$

- Therefore,

 $$\sum_{j=1}^{m} \left(c_{ij}^+ + c_{ij}^- \right) y_j \geq \beta_i$$

- Finally it takes the form,

 $$\sum_{j=1}^{m} \bar{c}_{ij}^+ y_j \geq \beta_i$$
Generation of Gomory Constraints …contd.

Case II: $\beta_i + (\overline{b}_i - x_i) < 0$

- For x_i to be an integer,
 \[
 \beta_i + (\overline{b}_i - x_i) = -1 + \beta_i \text{ or } -2 + \beta_i \text{ or } -3 + \beta_i, \ldots
 \]

- Therefore,
 \[
 \sum_{j=1}^{m} (\overline{c}_{ij}^+ + \overline{c}_{ij}^-) y_j \leq \beta_i - 1
 \]

- Finally it takes the form,
 \[
 \sum_{j=1}^{m} \overline{c}_{ij}^- y_j \leq \beta_i - 1
 \]
Generation of Gomory Constraints …contd.

- Dividing this inequality by \((\beta_i - 1)\) and multiplying with \(\beta_i\), we have

\[
\frac{\beta_i}{\beta_i - 1} \sum_{j=1}^{m} \tilde{c}_{ij} y_j \geq \beta_i
\]

- Now considering both cases I and II, the final form of the Gomory constraint after adding one slack variable \(s_i\) is,

\[
s_i - \sum_{j=1}^{m} \tilde{c}_{ij}^+ y_j - \frac{\beta_i}{\beta_i - 1} \sum_{j=1}^{m} \tilde{c}_{ij}^- y_j = -\beta_i
\]
Procedure for solving Mixed-Integer LP

- Solve the problem as an ordinary LP problem neglecting the integrality constraints.
- Generate Gomory constraint for the fractional valued variable that has integer restrictions.
- Insert a new row with the coefficients of this constraint, to the final tableau of the ordinary LP problem.
- Solve this by applying the dual simplex method
- The process is continued for all variables that have integrality constraints
Thank You