Dynamic Programming

Computational Procedure in Dynamic Programming
Objectives

- To explain the computational procedure of solving the multistage decision process using recursive equations for backward approach
Computational Procedure

Consider a serial multistage problem and the recursive equations developed for backward recursion.

The objective function is

\[f = \sum_{t=1}^{T} NB_t = \sum_{t=1}^{T} h_t(X_t, S_t) \]

Considering first sub-problem (last stage), the objective function is

\[f^*_T(S_T) = \text{opt}_{X_T}[h_T(X_T, S_T)] \]
Computational Procedure ...contd.

- The input variable is S_T and the decision variable is X_T.
- Optimal value of the objective function f^*_T depend on the input S_T.
- But at this stage, the value of S_T is not known.
- Value of S_T depends upon the values taken by the upstream components.
- Therefore, S_T is solved for all possible range of values.
- The results are entered in a graph or table which contains the calculated optimal values of X^*_T, S_{T+1} and also f^*_T.
The results are entered in a graph or table which contains the calculated optimal values of X_T^*, S_{T+1} and also f_T^*.

Typical table showing the results from the sub-optimization of stage 1

<table>
<thead>
<tr>
<th>Sl no</th>
<th>S_T</th>
<th>X_T^*</th>
<th>f_T^*</th>
<th>S_{T+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Computational Procedure …contd.

Consider the second sub-problem by grouping the last two components.

The objective function is

\[
f_{T-1}^*(S_{T-1}) = \text{opt}_{X_{T-1},X_T} \left[h_{T-1}(X_{T-1}, S_{T-1}) + h_T(X_T, S_T)\right]
\]
Computational Procedure …contd.

From the earlier lecture,

$$f^*_T(S_{T-1}) = \text{opt}_{X_{T-1}} \left[h_{T-1}(X_{T-1}, S_{T-1}) + f^*_T(S_T) \right]$$

The information of first sub-problem is obtained from the previous table.

A range of values are considered for S_{T-1}.

The optimal values of X^*_{T-1} and f^*_{T-1} are found for these range of values.
In general, consider the sub-optimization of \(i+1 \text{th} \) sub-problem (\(T-i \text{th} \) stage)

\[
f^*_T(S_{T-i}) = \text{opt} \left[h_{T-i}(X_{T-i}, S_{T-i}) + \ldots + h_{T-1}(X_{T-1}, S_{T-1}) + h_T(X_T, S_T) \right]
\]

\[
= \text{opt} \left[h_{T-i}(X_{T-i}, S_{T-i}) + f^*_T(S_{T-i}) \right]
\]

\[\text{...}(7)\]
Computational Procedure …contd.

At this stage, the sub-optimization has been carried out for all last i components.

The information regarding the optimal values of i^{th} sub-problem will be available in the form of a table.

Substituting this information in the objective function and considering a range of values, the optimal values of f_{T-i}^* and X_{T-i}^* can be calculated.
Computational Procedure ...contd.

The table showing the sub-optimization of \(i+1^{th} \) sub-problem is shown

<table>
<thead>
<tr>
<th>Sl no</th>
<th>(S_{T-1})</th>
<th>(X_{T-1}^*)</th>
<th>(S_{T-(i-1)})</th>
<th>(f_{T-(i-1)}^* \left(S_{T-(i-1)} \right))</th>
<th>(f_{T-i}^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

This procedure is repeated until stage 1 is reached

For initial value problems, only one value \(S_1 \) need to be analyzed for stage 1
Computational Procedure …contd.

After completing the sub-optimization of all the stages, retrace the steps through the tables generated to find the optimal values of X

The T^{th} sub-problem gives the values of X_1^* and f_1^* for a given value of S_1 (since the value of S_1 is known for an initial value problem)

Calculate the value of S_2^* using the transformation equation $S_2 = g(X_1, S_1)$, which is the input to the 2^{nd} stage ($T-1^{th}$ sub-problem)

From the tabulated results for the 2^{nd} stage, the values of X_2^* and f_2^* are found out

Again use the transformation equation to find out S_3^* and the process is repeated until the 1^{st} sub-problem or T^{th} stage is reached

The final optimum solution vector is given by $X_1^*, X_2^*, ..., X_T^*$
Thank You