1.5 Corrosion

Corrosion, fire protection and fatigue failure of steel structures are some of the main concerns of an engineer involved in the design and construction of structural steel work and these aspects do warrant extra attention. A review of international literature and the state-of-the-art in steel construction would reassure the designer that many aspects of corrosion, fire and fatigue behaviour of structural steel work are no longer the major issues. For example, the steel construction industry has developed excellent protective coatings that would retain service life even after 20 years without any attention! Similarly, the emergence of ‘fire engineering of steel structures’ as a specialised discipline has addressed many of the concerns regarding the safety of structural steel work under fire. In India ‘Fire Resistant Steels (FRS)’ are available which are quite effective in steelwork subjected to elevated temperatures. They are also cost effective compared to mild steel! Similarly, fatigue behaviour of steel structural systems has been researched extensively in the past few decades and has been covered excellently in the published literature. The revised Indian code IS 800 has introduced separate sections on each of these aspects pertaining to steel structures.

Corrosion is an electro-chemical process involving an anode, a cathode and an electrolyte. In the case of steel, when favourable condition for corrosion occurs, the ferrous ions go into solution from anodic areas. Electrons are then released from the anode and move through the cathode where they combine with water and oxygen to form hydroxyl ions. These react with the ferrous ions from anode to produce hydrated ferrous oxide, which further gets oxidised into ferric oxide, which is known as the ‘red rust’.

From the above discussion, it is clear, that the main interest of the structural designers is to prevent the formation of these “corrosion batteries”. For example, if we can wipe out the ‘drop of water’ shown in Fig.1.11, the corrosion will not take place! Hence using the “eliminate the electrolyte” principle, wherever possible we need to device detailing and protection to surfaces of structural steel work to ensure that the
combination of oxygen and water are avoided and hence the corrosion batteries are avoided. On the other hand, steel is anodic in the presence of stainless steel or brass and cathodic in the presence of zinc or aluminium and the second property can be used to protect it from corrosion.

The types of corrosion encountered in structural steel elements are:

**Pitting corrosion:** As shown in Fig.1.11, The anodic areas form a corrosion pit. This can occur with mild steel immersed in water or soil. This common type of corrosion is essentially due to the presence of moisture aided by improper detailing or constant exposure to alternate wetting and drying. This form of corrosion could easily be tackled by encouraging rapid drainage by proper detailing and allowing free flow of air, which would dry out the surface.

![Fig 1.11. Mechanism of corrosion in steel](image)

**Crevice corrosion:** The principle of crevice corrosion is shown in Fig.1.12. The oxygen content of water trapped in a crevice is less than that of water which is exposed to air. Because of this the crevice becomes anodic with respect to surrounding metal and hence the corrosion starts inside the crevice.

**Bimetallic corrosion:** When two dissimilar metals (for e.g. Iron and Aluminium) are joined together in an electrolyte, an electrical current passes between them and the corrosion occurs. This is because, metals in general could be arranged, depending on their electric potential, into a table called the ‘galvanic series’. The farther the metals in the galvanic series, the greater the potential differences between them causing the
anodic metal to corrode. A common example is the use of steel screws in stainless steel members and also using steel bolts in aluminium members. Obviously such a contact between dissimilar metals should be avoided in detailing.

![Fig 1.12. Mechanism of crevice corrosion](image)

**Stress corrosion:**

![Fig 1.13. Mechanism of stress corrosion](image)

This occurs under the simultaneous influence of a static tensile stress and a specific corrosive environment. Stress makes some spots in a body more anodic (especially the stress concentration zones) compared with the rest as shown in Fig.1.13. The crack tip in Fig.1.13 is the anodic part and it corrodes to make the crack wider. This corrosion is not common with ferrous metals though some stainless steels are susceptible to this.

**Fretting corrosion:** If two oxide coated films or rusted surfaces are rubbed together, the oxide film can be mechanically removed from high spots between the contacting surfaces as shown in Fig. 1.14. These exposed points become active anodes compared with the rest of the surfaces and initiate corrosion. This type corrosion is common in mechanical components.
**Bacterial corrosion:** This can occur in soils and water as a result of microbiological activity. Bacterial corrosion is most common in pipelines, buried structures and offshore structures.

**Hydrogen embrittlement:** This occurs mostly in fasteners and bolts. The atomic hydrogen may get absorbed into the surface of the fasteners. When tension is applied to these fasteners, hydrogen will tend to migrate to points of stress concentration. The pressure created by the hydrogen creates and/or extends a crack. The crack grows in subsequent stress cycles. Although hydrogen embrittlement is usually included in the discussion about corrosion, actually it is not really a corrosion phenomenon.

![Fig 1.14. The mechanism of fretting corrosion](image)

1.5.1 Corrosion protection to steel structure elements

1.5.1.2 Corrosion Protection methods – The methods of corrosion protection are governed by actual environmental conditions as per IS: 9077 and IS: 9172. The main corrosion protection methods are given below (Cl. 15.2.3):

a) Controlling the Electrode Potential

b) Inhibitors

c) Inorganic/Metal Coatings or Organic/Paint systems

Taking care of the following points can provide satisfactory corrosion protection to most structural steel elements: The design, fabrication and erection details of exposed structure should be such that good drainage of water is ensured. Standing pool of water, moisture accumulation and rundown of water for extended duration are to be avoided. The details of connections should ensure that
· All exposed surfaces are easily accessible for inspection and maintenance.
· All surfaces not so easily accessible are completely sealed against-ingress of moisture.
· Avoiding of entrapment and accumulation of moisture and dirt in components and connections by suitable detailing as shown in Fig. 1.15
· Avoiding contact with other materials such as bimetallic connections.
· Detailing the structural steel work to enhance air movement and thereby keeping the surfaces dry as shown in Fig.1.16

![Fig 1.15. Simple orientation of members to avoid dirt and water entrapment](image)

· Providing suitable drain holes wherever possible to initiate easy draining of the entrapped water as shown in Fig. 1.17
· Providing suitable access to all the components of steel structures for periodic maintenance, cleaning and carrying out inspection and maintenance at regular intervals.
· Providing coating applications to structural steel elements. Metallic coatings such as hot-dip galvanising, metal spray coatings, etc. are very effective forms of corrosion protection. Cleaning of the surfaces and applying suitable paints is the most commonly used and reliable method of corrosion protection.
Structural steel comes out of the mill with a mill scale on its surface. On weathering, water penetrates into the fissures of the mill scale and rusting of the steel surface occurs. The mill scale loses its adhesion and begins to shed. Mill scale therefore needs to be removed before any protective coatings are applied. The surface of steel may also contain dirt or other impurities during storage, transportation and handling. The various surface preparation methods are briefly explained below.

**Manual preparation:** This is a very economical surface cleaning method but only 30% of the rust and scale may be removed. This is usually carried out with a wire brush.
**Mechanical preparation:** This is carried out with power driven tools and up to 35% cleaning can be achieved. This method is quite fast and effective.

**Flame cleaning:** In this process an Oxy-gas flame causes differential thermal expansion and removes mill scale more effectively.

**Acid pickling:** This involves the immersion of steel in a bath of suitable acids to remove rust. Usually this is done before hot dip galvanising (explained in the next section).

**Blast cleaning:** In this process, abrasive particles are projected at high speed on to the steel surface and cleaning is effected by abrasive action. The common blast cleaning method is the ‘sand blasting’. However in some states of India, sand blasting is not allowed due to some environmental reasons.

### 1.5.2 Protective coatings

The principal protective coatings applied to structural steel work are paints, metal coatings or combination of these two. Paints basically consist of a pigment, a binder and solvent. After the paint has been applied as a wet film, the solvent evaporates leaving the binder and the pigment on the surface. In codes of practices relating to corrosion protection, the thickness of the primer, the type of paints and the thickness of the paint in term of microns are specified depending upon the corrosive environment. The codes of practice also specify the frequency with which the change of paint is required. Metal coatings on structural steel work are almost either zinc or aluminium. Hot dip Zinc coatings known as “galvanising”, involves dipping of the steelwork into a bath of molten Zinc at a temperature of about 450ºC. The work piece is first degreased and cleaned by pickling to enhance the wetting properties. Sometimes hot dip aluminising is also done. Alternatively, metal coating could also be applied using metal spraying.
1.5.3 Weathering steels

To protect steel from corrosion, some countries produce steels which by themselves can resist corrosion. These steels are called as “weathering steels or Corten steels”. Weathering steels are high strength alloy weldable structural steels, which possess excellent weathering resistance in many non-polluted atmospheric conditions. They contain up to 3% of alloying elements such as chromium, copper, nickel, phosphorous, etc. On exposure to air, under suitable conditions, they form adherent protective oxide coatings. This acts as a protective film, which with time and appropriate conditions causes the corrosion rate to reduce until it is a low terminal level. Conventional coatings are, therefore, not usually necessary since the steel provides its own protection. Weathering steels are 25% costlier than the mild steel, but in many cases the total cost of the structure can be reduced if advantage is taken of the 30% higher yield strength compared to mild steel.

1.5.4 Where does corrosion matter in structural steel work?

The requirement of durability should always be balanced with the cost of corrosion protection and the cost of the structure itself. Higher cost of protection is justified in structures such as bridges where longer life is desirable and the cost of repair or replacement is higher. The cost of repair and replacement should also take into account the cost due to loss of service over the repair period. With this in mind, the following discussions can be better understood.
### Table 1.4 Protection guide for steel work application (Section 15.2.5)

(a) Desired life in different environments (in years) under various coating systems

<table>
<thead>
<tr>
<th>Exposure Condition</th>
<th>Atmospheric Condition</th>
<th>Coating system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Mild</td>
<td>Normal Inland (Rural and Urban areas)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>*Polluted Inland (High airborne sulphur dioxide)</td>
<td>10</td>
</tr>
<tr>
<td>Severe</td>
<td>Normal Coastal (As normal inland plus high airborne salt levels)</td>
<td>10</td>
</tr>
<tr>
<td>Very severe</td>
<td>Polluted Coastal (As polluted Inland plus high airborne salt levels)</td>
<td>8</td>
</tr>
<tr>
<td>Extreme</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The corrosion of steel in a dry interior environment is virtually insignificant. For example, structural steel work in the interiors of offices, shops, schools, hostels, residences, airport terminals, hospitals etc. will not corrode noticeably during the expected 50-year life of the structure. Hence in these situations no protective coating is required and the structural steel work may be left exposed. Only when the structural steel work is exposed to moisture in an interior environment such as kitchens, sports halls etc. a little attention is needed in the detailing of the steel work or in the form of thin protective coatings. Structural steel work will need protective coatings in slightly intensive corrosive environment such as some industrial buildings, dairies, laundries, breweries etc. The above mentioned situations can be termed as ‘low to medium’ risk categories. Structural steel work exposed to high humidity and atmosphere, chemical plants, foundries, steel bridges, offshore structures would fall into the “high risk” category.
Structural steel work that is categorised into high-risk group requires better surface preparation and sufficient thickness of the anti-corrosive paints. As we review the protective coatings such as the paints available in the market to-day many of the paints can perform very satisfactorily for 5-7 years. Specially prepared epoxy paints when applied in sufficient thickness after a good surface preparation, can last as high as 20 years!! Corrosion of steel is no longer the major problem that it once was and the protective methods no longer pose any major disincentive for using steel in the building industry. For the purpose of selecting a suitable paint system, the corrosion risk groups of structural steel work are classified according to their location and their intended service; however the same classification can also be done depending on the exterior environment of the structural steel work as in Table.1.4

The general environment, to which steel structure is exposed during its working life, is classified into five levels of exposure conditions namely mild, moderate, severe, very severe and extreme (CI 15.2.2). For example, surfaces which are protected as in interior of buildings are classified as mild while those exposed to saturated salt air in coastal area are classified as severe. The code gives a description of each of these exposure conditions and they can be assumed to correspond to a certain atmospheric condition as shown in Table 1.4. For each atmospheric condition, the coating system to be adopted for a desired number of years is given. For desired life of 18years in polluted inland environment coating system 4 to be selected and so on. The coating system may consist of a primer, a thickening coat and a wearing coat of paint.