1 | Lecture 1 : Symmetry point group: Introduction | PDF unavailable |
2 | Lecture 2 : Symmetry point group: Examples Part I | PDF unavailable |
3 | Lecture 3 : Symmetry point group: Examples Part II | PDF unavailable |
4 | Lecture 4 : Symmetry point group: Examples Part III | PDF unavailable |
5 | Lecture 5 : Symmetry point group: Examples Part IV | PDF unavailable |
6 | Lecture 6 : Transformation matrices and Matrix representation: | PDF unavailable |
7 | Lecture 7 : More on Matrix representation: Cartesian coordinates in C2v point group | PDF unavailable |
8 | Lecture 8 : Matrix representation: the way ahead | PDF unavailable |
9 | Lecture 9 : Introduction to Group Theory | PDF unavailable |
10 | Lecture 10 : Group Multiplication Tables | PDF unavailable |
11 | Lecture 11 : Groups and subgroups | PDF unavailable |
12 | Lecture 12 : Classes, Similarity transformations | PDF unavailable |
13 | Lecture 13 : Introduction to Matrices | PDF unavailable |
14 | Lecture 14 : Application of matrices in solution of simultaneous equations | PDF unavailable |
15 | Lecture 15 : Matrix eigenvalue equation | PDF unavailable |
16 | Lecture 16 : Matrix eigenvalue equation: an example | PDF unavailable |
17 | Lecture 17 : Similarity Transformations | PDF unavailable |
18 | Lecture 18 : Back to transformation matrices | PDF unavailable |
19 | Lecture 19 : Matrix representation revisited | PDF unavailable |
20 | Lecture 20 : Function space and Transformation Operators | PDF unavailable |
21 | Lecture 21 : Transformation Operators form the same group as transformation matrices | PDF unavailable |
22 | Lecture 22 : Transformation Operators form a unitary representation for orthonormal basis | PDF unavailable |
23 | Lecture 23 : Transformation Operators: Switching Bases | PDF unavailable |
24 | Lecture 24 : Equivalent representations | PDF unavailable |
25 | Lecture 25 : Unitary Transformation | PDF unavailable |
26 | Lecture 26 : Unitary Transformations-Continued | PDF unavailable |
27 | Lecture 27 : Reducible and Irreducible Representations | PDF unavailable |
28 | Lecture 28 : Irreducible Representations and Great Orthogonality Theorem | PDF unavailable |
29 | Lecture 29 : Character Tables: C2v | PDF unavailable |
30 | Lecture 30 : Character Tables: C2v and C3v | PDF unavailable |
31 | Lecture 31 : Practice Session: Review of Some Questions and Solutions | PDF unavailable |
32 | Lecture 32 : Reducible to Irreducible Representations | PDF unavailable |
33 | Lecture 33 : Character Tables of Cyclic Groups | PDF unavailable |
34 | Lecture 34 : Symmetry of Normal Modes: D3h | PDF unavailable |
35 | Lecture 35 : Symmetry of Normal Modes: D3h : Continued | PDF unavailable |
36 | Lecture 36 : Symmetry of Normal Modes: a shortcut | PDF unavailable |
37 | Lecture 37 : Recap: Reducible Representation for Normal Modes | PDF unavailable |
38 | Lecture 38 : Contribution of internal motion to normal modes | PDF unavailable |
39 | Lecture 39 : Normal mode analysis: some examples | PDF unavailable |
40 | Lecture 40 : Infrared and Raman spectroscopy | PDF unavailable |
41 | Lecture 41 : IR and Raman activity | PDF unavailable |
42 | Lecture 42 : IR and Raman activity: examples | PDF unavailable |
43 | Lecture 43 : Symmetry Adapted Linear Combinations (SALC) | PDF unavailable |
44 | Lecture 44 : SALC:BeH2 | PDF unavailable |
45 | Lecture 45 : SALC:CH4 Introduction | PDF unavailable |
46 | Lecture 46 : SALC:CH4 | PDF unavailable |
47 | Lecture 47 : Projection Operators | PDF unavailable |
48 | Lecture 48 : Projection Operators – Continued | PDF unavailable |
49 | Lecture 49 : Generating SALC’s using Projection Operators | PDF unavailable |
50 | Lecture 50 : Generating SALC’s using Projection Operators - Continued | PDF unavailable |
51 | Lecture 51 : Oh complex and Group-subgroup relation | PDF unavailable |
52 | Lecture 52 : Group-Subgroup Relation | PDF unavailable |
53 | Lecture 53 : SALCs as Pi-MO andCyclopropenyl group | PDF unavailable |
54 | Lecture 54 : SALCs as Pi-MO, Cyclopropenyl group | PDF unavailable |
55 | Lecture 55 : SALCs as Pi-MO, Benzene | PDF unavailable |
56 | Lecture 56 : LCAO Huckel approximation | PDF unavailable |
57 | Lecture 57 : Huckel approximation: Naphthalene | PDF unavailable |
58 | Lecture 58 : Stationary states, Multiplicity, Ethylene | PDF unavailable |
59 | Lecture 59 : Napthalene -I | PDF unavailable |
60 | Lecture 60 : Napthalene -II | PDF unavailable |
61 | Lecture 61 : Napthalene -III | PDF unavailable |
62 | Lecture 62 : Transition Metal Complexes: CFT and LFT | PDF unavailable |
63 | Lecture 63 : Jahn-Teller Theorem, Tetragonal Distortion MOT:ML6, Sigma and Pi Bonds | PDF unavailable |
64 | Lecture 64 : MOT approach of bonding,H2O,Ferrocene | PDF unavailable |
65 | Lecture 65 : MOT approach of bonding,H2O,Ferrocene | PDF unavailable |
66 | Lecture 66 : Derivation: Great Orthogonality Theorem – I (Schurrs Lemma 1) | PDF unavailable |
67 | Lecture 67 : Derivation: Great Orthogonality Theorem – II (Schurrs Lemma 2) | PDF unavailable |
68 | Lecture 68 : Derivation: Great Orthogonality Theorem –III | PDF unavailable |