Modules / Lectures
Module NameDownload
noc18_cy15_Assignment1noc18_cy15_Assignment1
noc18_cy15_Assignment10noc18_cy15_Assignment10
noc18_cy15_Assignment11noc18_cy15_Assignment11
noc18_cy15_Assignment12noc18_cy15_Assignment12
noc18_cy15_Assignment13noc18_cy15_Assignment13
noc18_cy15_Assignment2noc18_cy15_Assignment2
noc18_cy15_Assignment3noc18_cy15_Assignment3
noc18_cy15_Assignment4noc18_cy15_Assignment4
noc18_cy15_Assignment5noc18_cy15_Assignment5
noc18_cy15_Assignment6noc18_cy15_Assignment6
noc18_cy15_Assignment7noc18_cy15_Assignment7
noc18_cy15_Assignment8noc18_cy15_Assignment8
noc18_cy15_Assignment9noc18_cy15_Assignment9


Sl.No Chapter Name MP4 Download
1Lecture 1 : Symmetry point group: IntroductionDownload
2Lecture 2 : Symmetry point group: Examples Part IDownload
3Lecture 3 : Symmetry point group: Examples Part IIDownload
4Lecture 4 : Symmetry point group: Examples Part IIIDownload
5Lecture 5 : Symmetry point group: Examples Part IVDownload
6Lecture 6 : Transformation matrices and Matrix representation: Download
7Lecture 7 : More on Matrix representation: Cartesian coordinates in C2v point groupDownload
8Lecture 8 : Matrix representation: the way aheadDownload
9Lecture 9 : Introduction to Group TheoryDownload
10Lecture 10 : Group Multiplication TablesDownload
11Lecture 11 : Groups and subgroupsDownload
12Lecture 12 : Classes, Similarity transformationsDownload
13Lecture 13 : Introduction to MatricesDownload
14Lecture 14 : Application of matrices in solution of simultaneous equationsDownload
15Lecture 15 : Matrix eigenvalue equationDownload
16Lecture 16 : Matrix eigenvalue equation: an exampleDownload
17Lecture 17 : Similarity TransformationsDownload
18Lecture 18 : Back to transformation matricesDownload
19Lecture 19 : Matrix representation revisitedDownload
20Lecture 20 : Function space and Transformation OperatorsDownload
21Lecture 21 : Transformation Operators form the same group as transformation matricesDownload
22Lecture 22 : Transformation Operators form a unitary representation for orthonormal basisDownload
23Lecture 23 : Transformation Operators: Switching BasesDownload
24Lecture 24 : Equivalent representationsDownload
25Lecture 25 : Unitary TransformationDownload
26Lecture 26 : Unitary Transformations-ContinuedDownload
27Lecture 27 : Reducible and Irreducible RepresentationsDownload
28Lecture 28 : Irreducible Representations and Great Orthogonality TheoremDownload
29Lecture 29 : Character Tables: C2vDownload
30Lecture 30 : Character Tables: C2v and C3vDownload
31Lecture 31 : Practice Session: Review of Some Questions and SolutionsDownload
32Lecture 32 : Reducible to Irreducible RepresentationsDownload
33Lecture 33 : Character Tables of Cyclic GroupsDownload
34Lecture 34 : Symmetry of Normal Modes: D3hDownload
35Lecture 35 : Symmetry of Normal Modes: D3h : ContinuedDownload
36Lecture 36 : Symmetry of Normal Modes: a shortcutDownload
37Lecture 37 : Recap: Reducible Representation for Normal ModesDownload
38Lecture 38 : Contribution of internal motion to normal modesDownload
39Lecture 39 : Normal mode analysis: some examplesDownload
40Lecture 40 : Infrared and Raman spectroscopyDownload
41Lecture 41 : IR and Raman activityDownload
42Lecture 42 : IR and Raman activity: examplesDownload
43Lecture 43 : Symmetry Adapted Linear Combinations (SALC)Download
44Lecture 44 : SALC:BeH2Download
45Lecture 45 : SALC:CH4 IntroductionDownload
46Lecture 46 : SALC:CH4Download
47Lecture 47 : Projection OperatorsDownload
48Lecture 48 : Projection Operators – ContinuedDownload
49Lecture 49 : Generating SALC’s using Projection OperatorsDownload
50Lecture 50 : Generating SALC’s using Projection Operators - ContinuedDownload
51Lecture 51 : Oh complex and Group-subgroup relationDownload
52Lecture 52 : Group-Subgroup RelationDownload
53Lecture 53 : SALCs as Pi-MO andCyclopropenyl groupDownload
54Lecture 54 : SALCs as Pi-MO, Cyclopropenyl groupDownload
55Lecture 55 : SALCs as Pi-MO, BenzeneDownload
56Lecture 56 : LCAO Huckel approximationDownload
57Lecture 57 : Huckel approximation: NaphthaleneDownload
58Lecture 58 : Stationary states, Multiplicity, EthyleneDownload
59Lecture 59 : Napthalene -IDownload
60Lecture 60 : Napthalene -IIDownload
61Lecture 61 : Napthalene -IIIDownload
62Lecture 62 : Transition Metal Complexes: CFT and LFTDownload
63Lecture 63 : Jahn-Teller Theorem, Tetragonal Distortion MOT:ML6, Sigma and Pi Bonds Download
64Lecture 64 : MOT approach of bonding,H2O,FerroceneDownload
65Lecture 65 : MOT approach of bonding,H2O,FerroceneDownload
66Lecture 66 : Derivation: Great Orthogonality Theorem – I (Schurrs Lemma 1)Download
67Lecture 67 : Derivation: Great Orthogonality Theorem – II (Schurrs Lemma 2)Download
68Lecture 68 : Derivation: Great Orthogonality Theorem –IIIDownload

Sl.No Chapter Name English
1Lecture 1 : Symmetry point group: IntroductionPDF unavailable
2Lecture 2 : Symmetry point group: Examples Part IPDF unavailable
3Lecture 3 : Symmetry point group: Examples Part IIPDF unavailable
4Lecture 4 : Symmetry point group: Examples Part IIIPDF unavailable
5Lecture 5 : Symmetry point group: Examples Part IVPDF unavailable
6Lecture 6 : Transformation matrices and Matrix representation: PDF unavailable
7Lecture 7 : More on Matrix representation: Cartesian coordinates in C2v point groupPDF unavailable
8Lecture 8 : Matrix representation: the way aheadPDF unavailable
9Lecture 9 : Introduction to Group TheoryPDF unavailable
10Lecture 10 : Group Multiplication TablesPDF unavailable
11Lecture 11 : Groups and subgroupsPDF unavailable
12Lecture 12 : Classes, Similarity transformationsPDF unavailable
13Lecture 13 : Introduction to MatricesPDF unavailable
14Lecture 14 : Application of matrices in solution of simultaneous equationsPDF unavailable
15Lecture 15 : Matrix eigenvalue equationPDF unavailable
16Lecture 16 : Matrix eigenvalue equation: an examplePDF unavailable
17Lecture 17 : Similarity TransformationsPDF unavailable
18Lecture 18 : Back to transformation matricesPDF unavailable
19Lecture 19 : Matrix representation revisitedPDF unavailable
20Lecture 20 : Function space and Transformation OperatorsPDF unavailable
21Lecture 21 : Transformation Operators form the same group as transformation matricesPDF unavailable
22Lecture 22 : Transformation Operators form a unitary representation for orthonormal basisPDF unavailable
23Lecture 23 : Transformation Operators: Switching BasesPDF unavailable
24Lecture 24 : Equivalent representationsPDF unavailable
25Lecture 25 : Unitary TransformationPDF unavailable
26Lecture 26 : Unitary Transformations-ContinuedPDF unavailable
27Lecture 27 : Reducible and Irreducible RepresentationsPDF unavailable
28Lecture 28 : Irreducible Representations and Great Orthogonality TheoremPDF unavailable
29Lecture 29 : Character Tables: C2vPDF unavailable
30Lecture 30 : Character Tables: C2v and C3vPDF unavailable
31Lecture 31 : Practice Session: Review of Some Questions and SolutionsPDF unavailable
32Lecture 32 : Reducible to Irreducible RepresentationsPDF unavailable
33Lecture 33 : Character Tables of Cyclic GroupsPDF unavailable
34Lecture 34 : Symmetry of Normal Modes: D3hPDF unavailable
35Lecture 35 : Symmetry of Normal Modes: D3h : ContinuedPDF unavailable
36Lecture 36 : Symmetry of Normal Modes: a shortcutPDF unavailable
37Lecture 37 : Recap: Reducible Representation for Normal ModesPDF unavailable
38Lecture 38 : Contribution of internal motion to normal modesPDF unavailable
39Lecture 39 : Normal mode analysis: some examplesPDF unavailable
40Lecture 40 : Infrared and Raman spectroscopyPDF unavailable
41Lecture 41 : IR and Raman activityPDF unavailable
42Lecture 42 : IR and Raman activity: examplesPDF unavailable
43Lecture 43 : Symmetry Adapted Linear Combinations (SALC)PDF unavailable
44Lecture 44 : SALC:BeH2PDF unavailable
45Lecture 45 : SALC:CH4 IntroductionPDF unavailable
46Lecture 46 : SALC:CH4PDF unavailable
47Lecture 47 : Projection OperatorsPDF unavailable
48Lecture 48 : Projection Operators – ContinuedPDF unavailable
49Lecture 49 : Generating SALC’s using Projection OperatorsPDF unavailable
50Lecture 50 : Generating SALC’s using Projection Operators - ContinuedPDF unavailable
51Lecture 51 : Oh complex and Group-subgroup relationPDF unavailable
52Lecture 52 : Group-Subgroup RelationPDF unavailable
53Lecture 53 : SALCs as Pi-MO andCyclopropenyl groupPDF unavailable
54Lecture 54 : SALCs as Pi-MO, Cyclopropenyl groupPDF unavailable
55Lecture 55 : SALCs as Pi-MO, BenzenePDF unavailable
56Lecture 56 : LCAO Huckel approximationPDF unavailable
57Lecture 57 : Huckel approximation: NaphthalenePDF unavailable
58Lecture 58 : Stationary states, Multiplicity, EthylenePDF unavailable
59Lecture 59 : Napthalene -IPDF unavailable
60Lecture 60 : Napthalene -IIPDF unavailable
61Lecture 61 : Napthalene -IIIPDF unavailable
62Lecture 62 : Transition Metal Complexes: CFT and LFTPDF unavailable
63Lecture 63 : Jahn-Teller Theorem, Tetragonal Distortion MOT:ML6, Sigma and Pi Bonds PDF unavailable
64Lecture 64 : MOT approach of bonding,H2O,FerrocenePDF unavailable
65Lecture 65 : MOT approach of bonding,H2O,FerrocenePDF unavailable
66Lecture 66 : Derivation: Great Orthogonality Theorem – I (Schurrs Lemma 1)PDF unavailable
67Lecture 67 : Derivation: Great Orthogonality Theorem – II (Schurrs Lemma 2)PDF unavailable
68Lecture 68 : Derivation: Great Orthogonality Theorem –IIIPDF unavailable


Sl.No Language Book link
1EnglishNot Available
2BengaliNot Available
3GujaratiNot Available
4HindiNot Available
5KannadaNot Available
6MalayalamNot Available
7MarathiNot Available
8TamilNot Available
9TeluguNot Available