MODULE 2: DIFFUSION

LECTURE NO. 3

2.3 Diffusion through variable cross-sectional area

2.3.1 Diffusion through a conduit of non-uniform cross-sectional area

Consider a component A is diffusing at steady state through a circular conduit which is tapered uniformly as shown in Figure 2.3. At point 1 the radius is \(r_1 \) and at point 2 it is \(r_2 \). At position Z in the conduit, A is diffusing through stagnant, non-diffusing B.

At position Z the flux can be written as

\[
N_A = \frac{\overline{N}_A}{\pi r^2} = -D_{AB} \frac{dP_A}{RT} \frac{dP_A}{1-P_A/P} dz
\]

(2.23)

Using the geometry as shown, the variable radius \(r \) can be related to position \(z \) in the path as follows:
\[r = \left(\frac{r_2 - r_1}{z_2 - z_1} \right) z + r_1 \]

(2.24)

The Equation (2.24) is then substituted in the flux Equation to eliminate \(r \) and then the Equation is integrated and obtained as:

\[
\frac{N_A}{\pi} \int_{z_1}^{z_2} \left(\frac{r_2 - r_1}{z_2 - z_1} \right) z + r_1 \, dz = -\frac{D_{AB}}{RT} \frac{P_A}{P_{A1}} \int_{p_{A1}}^{P} \frac{dP}{1 - P/P}
\]

Or

\[
\frac{N_A}{4\pi} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) = \frac{D_{AB} P}{RT} \ln \frac{P - P_{A2}}{P - P_{A1}}
\]

(2.25)

2.3.2 Evaporation of water from metal tube

Suppose water in the bottom of a narrow metal tube is held at constant temperature \(T \). The total pressure of air (assumed dry) is \(P \) and the temperature is \(T \). Water evaporates and diffuses through the air. At a given time \(t \), the level is \(Z \) meter from the top as shown in Figure 2.4. As diffusion proceeds, the level drops slowly. At any time \(t \), the steady state Equation holds, but the path length is \(Z \).

![Figure 2.4: Schematic of evaporation in metal tube](image-url)
Thus the steady state Equation becomes as follows where N_A and Z are variables:

$$N_A = \frac{D_{AB} P}{RT Z P_{BM}} (P_A - P_{A_0})$$ \hspace{1cm} (2.26)

Where

$$P_{BM} = \frac{P_{B_1} - P_{B_2}}{\ln(P_{B_1} / P_{B_2})} = \frac{P_A - P_{A_0}}{\ln[(P - P_{A_0})/(P - P_{A_0})]}$$ \hspace{1cm} (2.27)

Assuming a cross sectional area of 1 m2, the level drops dZ meter in dt sec, and $\rho_A(dZ.1)/M_A$ is the kmol of A that has been left and diffused. Then

$$N_A.1 = \frac{\rho_A(dZ.1)}{M_A dt}$$ \hspace{1cm} (2.28)

Substituting the Equation (2.28) in Equation (2.26) and integrating, one gets

$$\frac{\rho_A}{M_A} \int_{Z_0}^{Z_f} Z dZ = \frac{D_{AB} P (P_A - P_{A_0})}{RT P_{BM}} \int_0^1 dt$$ \hspace{1cm} (2.29)

$$t_f = \frac{\rho_A (Z_F^2 - Z_0^2) RT P_{BM}}{2M_A D_{AB} P (P_A - P_{A_0})}$$ \hspace{1cm} (2.30)

The Equation (2.30) represents the time t_f for the level to drop from a starting point of Z_0 meter at $t = 0$ to Z_F at $t = t_f$.

2.3.3 Diffusion from a sphere

There are lots of examples where diffusion can take place through the spherical shape bodies. Some examples are:

- Evaporation of a drop of liquid
- The evaporation of a ball of naphthalene
- The diffusion of nutrients to a sphere-like microorganism in a liquid

Assume a constant number of moles \tilde{N}_A of A from a sphere (area = $4\pi r^2$) through stagnant B as shown in Figure 2.5.
From the Fick's law of diffusion, the rate of diffusion can be expressed as:

\[N_A \left(1 - \frac{P_A}{P_{total}} \right) = - \frac{D_{AB}}{RT} \frac{dP_A}{dr} \]

\[(2.31) \]

where \(N_A = \frac{\bar{N}_A}{4\pi r^2} \)

\[(2.32) \]

\[\frac{-RT \bar{N}_A}{4\pi D_{AB}} \frac{dr}{r^2} = P_{total} \frac{dP_A}{(P_{total} - P_A)} \]

\[(2.33) \]

Integrating with limits of \(P_A \) at \(r_2 \) and \(P_A \) at \(r_1 \) gives:

\[\frac{-RT \bar{N}_A}{4\pi D_{AB}} P_{total} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) = \ln \left(\frac{P_{total} - P_{A2}}{P_{total} - P_{A1}} \right) \]

\[(2.34) \]

As \(r_1 \ll r_2 \), then \(1/r_2 \approx 0 \):

\[\frac{\bar{N}_A}{4\pi r_1^2} = \frac{D_{AB} P_{total} (P_{A1} - P_{A2})}{RTP_{BM} r_1} = N_{A1}, \text{ the flux at the surface} \]

\[(2.35) \]

This Equation can be simplified if \(P_{A1} \) is small compared to \(P \) (a dilute gas phase), \(P_{BM} \approx P \). Also setting \(2r_1 = D_1 \), diameter, \(C_{A1} = P_{A1}/RT \)

\[N_{A1} = \frac{D_{AB}}{D_1} (C_{A1} - C_{A2}) \]

\[(2.36) \]