TURBOMACHINERY
AERODYNAMICS

Prof. Bhaskar Roy, Prof. A M Pradeep
Department of Aerospace Engineering,
IIT Bombay
In this lecture...

• Axial flow compressors and fans
 – Thermodynamics of compression
 – P-v and T-s diagrams of compressors
 – Thermodynamics of compression process
 – Multi-stage compression
 – Basic operation of axial compressors/fans
 – Velocity triangles
 – Work and compression
Introduction

- Simplified aero-thermodynamic analysis
- Optimised cycle design to precede the detailed component design
- Prediction of work requirements
- Efficiency of the compressor
- Enables faster design modifications
Thermodynamics of compression

(i) Adiabatic (process $1-2'$), $Pv^\gamma = c$

(ii) Isothermal process ($1-2''$), $Pv = c$

(iii) Isochoric (Process $1-2'''$), $Pv^\infty = c$
Thermodynamics of compressors

i) Isentropic process (1-2/)

ii) Polytropic process (1-2)

iii) Isothermal process (1-2/\)

iv) Isochoric Process (1-2///)
Thermodynamics of compressors

- The compression process is usually expressed in H-s or T-s diagrams.
- The ideal compression process is assumed to be isentropic.
- Deviation from this is expressed as isentropic efficiency.
Thermodynamics of compressors

X_1, X_2 are the losses in the rotor and the stator respectively.

Compression in terms of static parameters.
Thermodynamics of compressors

Compression in terms of total parameters
Thermodynamics of multi-stage compressors

- The flow at the rotor exit with high kinetic energy is still to be converted to static pressure through diffusion.
- The exit kinetic energy of a compressor is of the same order as the entry kinetic energy and the entire work input is expected to be converted to pressure.
Basic operation of axial compressors

- Axial flow compressors usually consists of a series of stages.
- Each stage comprises of a row of rotor blades followed by a row of stator blades.
- The working fluid is initially accelerated by the rotor blades and then decelerated in the stator passages.
- In the stator, the kinetic energy transferred in the rotor is converted to static pressure.
- This process is repeated in several stages to yield the necessary overall pressure ratio.
Basic operation of axial compressors

• The compression process consists of a series of diffusions.
• This occurs both in the rotor as well as the stator.
• Due to motion of the rotor blades→ two distinct velocity components: absolute and relative velocities in the rotor.
• The absolute velocity of the fluid is increased in the rotor, whereas the relative velocity is decreased, leading to diffusion.
• Per stage pressure ratio is limited because a compressor operates in an adverse pressure gradient environment.
Basic operation of axial compressors

- Turbines on the other hand operate under favourable pressure gradients.
- Several stages of an axial compressor can be driven by a single turbine stage.
- Careful design of the compressor blading is essential to minimize losses as well as to ensure stable operation.
- Some compressors also have inlet Guide Vanes (IGV) that permit the flow entering the first stage to vary under off-design conditions.
Velocity triangles

- Elementary analysis of axial compressors begins with velocity triangles.
- The analysis will be carried out at the mean height of the blade, where the peripheral velocity or the blade speed is, U.
- The absolute component of velocity will be denoted by, C and the relative component by, V.
- The axial velocity (absolute) will be denoted by C_a and the tangential components will be denoted by subscript w (for eg, C_w or V_w)
- α denotes the angle between the absolute velocity with the axial direction and β the corresponding angle for the relative velocity.
Velocity triangles

\[\vec{C} = \vec{U} + \vec{V} \]
Velocity triangles

- C_1
- C_2
- C_w
- ΔC_w
- V_1
- V_2
- α_1
- α_2
- β_1
- β_2
- V_{w1}
- V_{w2}
- C_{w1}
- C_{w2}
- U
- C_a
Property changes across a stage

Total enthalpy

Absolute velocity

Static pressure
Work and compression

• Assuming $C_a = C_{a1} = C_{a2}$, from the velocity triangles, we can see that

$$\frac{U}{C_a} = \tan \alpha_1 + \tan \beta_1 \quad \text{and} \quad \frac{U}{C_a} = \tan \alpha_2 + \tan \beta_2$$

• By considering the change in angular momentum of the air passing through the rotor, work done per unit mass flow is

$$w = U(C_{w2} - C_{w1})$$

where C_{w1} and C_{w2} are the tangential components of the fluid velocity before and after the rotor, respectively.
Work and compression

The above equation can also be written as,
\[w = UC_a (\tan \alpha_2 - \tan \alpha_1) \]
Since, \((\tan \alpha_2 - \tan \alpha_1) = (\tan \beta_1 - \tan \beta_2) \)
\[\therefore w = UC_a (\tan \beta_1 - \tan \beta_2) \]
In other words, \(w = U \Delta C_w \)

- The input energy will reveal itself in the form of rise in stagnation temperature of the air.
- The work done as given above will also be equal to the change in stagnation enthalpy across the stage.
Work and compression

\[h_{02} - h_{01} = U \Delta C_w \]

\[T_{02} - T_{01} = \frac{U \Delta C_w}{c_p} \quad \Rightarrow \quad \Delta T_0 = \frac{U \Delta C_w}{c_p T_{01}} \]

Since the flow is adiabatic and no work is done as the fluid passes through the stator, \(T_{03} = T_{02} \)

Let us define stage efficiency, \(\eta_{st} \), as

\[\eta_{st} = \frac{h_{03s} - h_{01}}{h_{03} - h_{01}} \]

This can be expressed as

\[\frac{T_{03s}}{T_{01}} = 1 + \eta_{st} \frac{\Delta T_0}{T_{01}} \]
In the above equation, $\Delta T_0 = T_{03} - T_{01}$

In terms of pressure ratio,

$$\frac{p_{03}}{p_{01}} = \left[1 + \eta_{st} \frac{\Delta T_0}{T_{01}} \right]^{\gamma/(\gamma-1)}$$

This can be combined with the earlier equation to give,

$$\frac{p_{03}}{p_{01}} = \left[1 + \eta_{st} \frac{U \Delta C_w}{c_p T_{01}} \right]^{\gamma/(\gamma-1)}$$
Work and compression

• From the above equation that relates the per stage temperature rise to the pressure ratio, it can be seen that to obtain a high temperature ratio for a given overall pressure ratio (for minimizing number of stages),
 – High blade speed: limited by blades stresses
 – High axial velocity, high fluid deflection \((\beta_1 - \beta_2)\): Aerodynamic considerations and adverse pressure gradients limit the above.
Work and compression

• From the above equation that relates the per stage temperature rise to the pressure ratio, it can be seen that to obtain a high temperature ratio for a given overall pressure ratio (for minimizing number of stages),
 – High blade speed: limited by blades stresses
 – High axial velocity, high fluid deflection $(\beta_1-\beta_2)$: Aerodynamic considerations and adverse pressure gradients limit the above.
In this lecture...

- Axial flow compressors and fans
 - Thermodynamics of compression
 - P-v and T-s diagrams of compressors
 - Thermodynamics of compression process
 - Multi-stage compression
 - Basic operation of axial compressors/fans
 - Velocity triangles
 - Work and compression
In the next lecture...

• Two-dimensional analytical model
• Performance parameters
• Cascade aerodynamics