In this lecture...

- Axial flow compressors
 - Basic operation of axial compressors
 - Velocity triangles
 - Work and compression
 - Design parameters
 - Flow coefficient
 - Loading coefficient
 - Degree of reaction
 - Diffusion factor
Basic operation of axial compressors

• Axial flow compressors usually consists of a series of stages.
• Each stage comprises of a row of rotor blades followed by a row of stator blades.
• The working fluid is initially accelerated by the rotor blades and then decelerated in the stator passages.
• In the stator, the kinetic energy transferred in the rotor is converted to static pressure.
• This process is repeated in several stages to yield the necessary overall pressure ratio.
Basic operation of axial compressors

• The compression process consists of a series of diffusions.
• This occurs both in the rotor as well as the stator.
• Due to motion of the rotor blades, two distinct velocity components: absolute and relative velocities in the rotor.
• The absolute velocity of the fluid is increased in the rotor, whereas the relative velocity is decreased, leading to diffusion.
• Per stage pressure ratio is limited because a compressor operates in an adverse pressure gradient environment.
Basic operation of axial compressors

- Turbines on the other hand operate under favourable pressure gradients.
- Several stages of an axial compressor can be driven by a single turbine stage.
- Careful design of the compressor blading is essential to minimize losses as well as to ensure stable operation.
- Some compressors also have inlet Guide Vanes (IGV) that permit the flow entering the first stage to vary under off-design conditions.
Velocity triangles

- Elementary analysis of axial compressors begins with velocity triangles.
- The analysis will be carried out at the mean height of the blade, where the peripheral velocity or the blade speed is, U.
- The absolute component of velocity will be denoted by, C and the relative component by, V.
- The axial velocity (absolute) will be denoted by C_a and the tangential components will be denoted by subscript w (for eg, C_w or V_w).
- α denotes the angle between the absolute velocity with the axial direction and β the corresponding angle for the relative velocity.
Velocity triangles

\[\vec{C} = \vec{U} + \vec{V} \]
Velocity triangles

\[\Delta C_w \]

\[C_1 \]

\[C_2 \]

\[V_1 \]

\[V_2 \]

\[\alpha_1 \]

\[\beta_1 \]

\[\alpha_2 \]

\[\beta_2 \]

\[C_w^2 \]

\[C_w^1 \]

\[V_{w1} \]

\[V_{w2} \]

\[U \]

\[C_a \]
Property changes across a stage

- **Total enthalpy**
 - h_{01}
 - h_{02}
 - h_{03}

- **Absolute velocity**
 - C_1
 - C_2
 - C_3

- **Static pressure**
 - P_1
 - P_2
 - P_3

Rotor

Stator
Work and compression

• Assuming $C_a = C_{a1} = C_{a2}$, from the velocity triangles, we can see that

$$\frac{U}{C_a} = \tan \alpha_1 + \tan \beta_1 \quad \text{and} \quad \frac{U}{C_a} = \tan \alpha_2 + \tan \beta_2$$

• By considering the change in angular momentum of the air passing through the rotor, work done per unit mass flow is

$$w = U(C_{w2} - C_{w1}), \text{ where } C_{w1} \text{ and } C_{w2} \text{ are the tangential components of the fluid velocity before and after the rotor, respectively.}$$
Work and compression

The above equation can also be written as,

\[w = UC_a (\tan \alpha_2 - \tan \alpha_1) \]

Since, \((\tan \alpha_2 - \tan \alpha_1) = (\tan \beta_1 - \tan \beta_2) \)

\[\therefore w = UC_a (\tan \beta_1 - \tan \beta_2) \]

In other words, \(w = U \Delta C_w \)

- The input energy will reveal itself in the form of rise in stagnation temperature of the air.
- The work done as given above will also be equal to the change in stagnation enthalpy across the stage.
Work and compression

\[h_{02} - h_{01} = U \Delta C_w \]

\[T_{02} - T_{01} = \frac{U \Delta C_w}{c_p} \Rightarrow \frac{\Delta T_0}{T_{01}} = \frac{U \Delta C_w}{c_p T_{01}} \]

Since the flow is adiabatic and no work is done as the fluid passes through the stator, \(T_{03} = T_{02} \)

Let us define stage efficiency, \(\eta_{st} \), as

\[\eta_{st} = \frac{h_{03s} - h_{01}}{h_{03} - h_{01}} \]

This can be expressed as

\[\frac{T_{03s}}{T_{01}} = 1 + \eta_{st} \frac{\Delta T_0}{T_{01}} \]
Work and compression

In the above equation, \(\Delta T_0 = T_{03} - T_{01} \)

In terms of pressure ratio,

\[
\frac{P_{03}}{P_{01}} = \left[1 + \eta_{st} \frac{\Delta T_0}{T_{01}} \right]^{\gamma/(\gamma-1)}
\]

This can be combined with the earlier equation to give,

\[
\frac{P_{03}}{P_{01}} = \left[1 + \eta_{st} \frac{U \Delta C_w}{c_p T_{01}} \right]^{\gamma/(\gamma-1)}
\]
Work and compression

• From the above equation that relates the per stage temperature rise to the pressure ratio, it can be seen that to obtain a high temperature ratio for a given overall pressure ratio (for minimizing number of stages),
 – High blade speed: limited by blades stresses
 – High axial velocity, high fluid deflection $(\beta_1-\beta_2)$: Aerodynamic considerations and adverse pressure gradients limit the above.
Design parameters

• The following design parameters are often used in the parametric study of axial compressors:
 – Flow coefficient,
 \[\phi = \frac{C_a}{U} \]
 – Stage loading,
 \[\psi = \frac{\Delta h_0}{U^2} = \frac{\Delta C_w}{U} \]
 – Degree of reaction, \(R_x \)
 – Diffusion factor, \(D^* \)
Degree of reaction

- Diffusion takes place in both rotor and the stator.
- Static pressure rises in the rotor as well as the stator.
- Degree of reaction provides a measure of the extent to which the rotor contributes to the overall pressure rise in the stage.
Degree of reaction

\[R_x = \frac{\text{Static enthalpy rise in the rotor}}{\text{Stagnation enthalpy rise in the stage}} \]

\[= \frac{h_2 - h_1}{h_{03} - h_{01}} \approx \frac{h_2 - h_1}{h_{02} - h_{01}} \]

For a nearly incompressible flow,

\[h_2 - h_1 \approx \frac{1}{\rho} (P_2 - P_1) \text{ for the rotor} \]

and for the stage, \[h_{03} - h_{01} \approx \frac{1}{\rho} (P_{03} - P_{01}) \]

\[\therefore R_x = \frac{h_2 - h_1}{h_{02} - h_{01}} \approx \frac{P_2 - P_1}{P_{02} - P_{01}} \]
Degree of reaction

From the steady flow energy equation,

\[h_1 + \frac{V_1^2}{2} = h_2 + \frac{V_2^2}{2} \]

\[\therefore R_x = \frac{h_2 - h_1}{h_{03} - h_{01}} = \frac{V_1^2 - V_2^2}{2U(C_{w2} - C_{w1})} \]

For constant axial velocity, \(V_1^2 - V_2^2 = V_{w1}^2 - V_{w2}^2\)

And, \(V_{w1} - V_{w2} = C_{w1} - C_{w2}\)

On simplification, \(R_x = \frac{1}{2} - \frac{C_a}{2U} (\tan \alpha_1 - \tan \beta_2)\)

or, \(R_x = \frac{C_a}{2U} (\tan \beta_1 + \tan \beta_2)\)
Degree of reaction

- Special cases of R_x
 - $R_x=0, \beta_2 = -\beta_1,$ There is no pressure rise in the rotor, the entire pressure rise is due to the stator, the rotor merely deflects the incoming flow: impulse blading
 - $R_x=0.5,$ gives $\alpha_1 = \beta_2$ and $\alpha_2 = \beta_1,$ the velocity triangles are symmetric, equal pressure rise in the rotor and the stator
 - $R_x=1.0, \alpha_2 = -\alpha_1,$ entire pressure rise takes place in the rotor while the stator has no contribution.
Degree of reaction

\[\alpha_2 = -\alpha_1 \]

\[\beta_2 = -\beta_1 \]

\[\alpha_1 = \beta_2 \text{ and } \alpha_2 = \beta_1 \]

\[R_x = 0.0 \]

\[R_x = 0.5 \]

\[R_x = 1.0 \]
Diffusion factor

- Fluid deflection \((\beta_2 - \beta_1)\) is an important parameter that affects the stage pressure rise.
- Excessive deflection, which means high rate of diffusion, will lead to blade stall.
- Diffusion factor is a parameter that associates blade stall with deceleration on the suction surface of the airfoil section.
- Diffusion factor, \(D^*\), is defined as
 \[
 D^* = \frac{V_{\text{max}} - V_2}{V_1}
 \]
 Where, \(V_{\text{max}}\) is the ideal surface velocity at the minimum pressure point and \(V_2\) is the ideal velocity at the trailing edge and \(V_1\) is the velocity at the leading edge.
Diffusion factor

- Suction surface
- Pressure surface

Symbols:
- V_1
- V_{max}
- V_2

Axes:
- Velocity
- Percent chord

Indices:
- 0
- 50
- 100
Diffusion factor

- Lieblein (1953) proposed an empirical parameter for diffusion factor.
 - It is expressed entirely in terms of known or measured quantities.
 - It depends strongly upon solidity (C/s).
 - It has been proven to be a dependable indicator of approach to separation for a variety of blade shapes.
 - D^* is usually kept around 0.5.

$$D^* = 1 - \frac{V_2}{V_1} + \frac{V_{w1} - V_{w2}}{2\left(\frac{C}{s}\right)V_1}$$

Where, C is the chord of the blade and s is the spacing between the blades.
In this lecture...

• Axial flow compressors
 – Basic operation of axial compressors
 – Velocity triangles
 – Work and compression
 – Design parameters
 • Flow coefficient
 • Loading coefficient
 • Degree of reaction
 • Diffusion factor
In the next lecture...

• Cascade analysis
 – Cascade nomenclature
 – Loss and blade performance estimation