Digital Video Signal Processing - Web course

COURSE OUTLINE

The course is intended for Senior Undergraduate Students in the branch of ECE, with a prior background in digital signal processing.

COURSE DETAIL

<table>
<thead>
<tr>
<th>Module No.</th>
<th>Topic/s</th>
<th>No.of Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Video Formation, Perception and Representation</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>a. Video Capture and Display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Principles of Color Video.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Video Cameras.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Video Display.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Composite versus Component Models.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gamma Connection.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Analog Video Raster</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Progressive vs Interlaced scans.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Characterisation of Video Raster.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Spatial and Temporal resolution, Signal Bandwidth.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Multiplexing of Luminance, Chrominance and Audio.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Digital Video</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Notation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ITU-R.BT.601 Digital Video Format.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Other Digital Video Formats and Applications.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Digital Video Quality Measure.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fourier Analysis of Video Signals and Frequency Response of the Human Visual System.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>a. Multidimensional Continuous-Space Signals and Systems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Multidimensional discrete-Space Signals and Systems.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Video Sampling</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>b. Sampling of Video Signals Over Lattices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Filtering Operations in Cameras and Display Devices</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Video Sampling Rate Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Conversion of Signals Sampled on Different Lattices</td>
<td></td>
</tr>
<tr>
<td>b. Sampling Rate Conversion of Video Signals</td>
<td></td>
</tr>
</tbody>
</table>
Video Modeling

a. **Camera Model**
 - Pinhole Model.
 - CAHV Model.
 - Camera Motions.

b. **Object Model**
 - Shape Model.
 - Motion Model.

c. **Scene Model**.

d. **Two-Dimensional Motion Models**
 - Definition and Notation.
 - Two-Dimensional Motion Models Corresponding to Typical Camera Motions.
 - Two-Dimensional Motion Corresponding to Three-Dimensional Rigid Motion.
 - Approximation of Projective Mapping.

Two-Dimensional Motion Estimation

a. **Optical Flow**
 - Two-Dimensional Motion versus Optical Flow.
 - Optical Flow Equation and Ambiguity in Motion Estimation.

b. **General Methodologies**
 - Motion Representation.
 - Motion Estimation Criteria.
 - Optimization Methods.

c. **Pixel-Based Motion Estimation**
 - Regularization Using the Motion Smoothness Constraints.
 - Using a Multipoint Neighborhood.
 - Pel-Recursive Methods.

d. **Block-Matching Algorithm**
 - The Exhaustive Block-Matching Algorithm.
 - Fractional Accuracy Search.
 - Fast Algorithm.
 - Imposing Motion Smoothness Constraints.
 - Phase Correlation Method.
 - Binary Feature Matching.
Waveform-Based Video Coding

a. Block-Based Transform Coding
- Overview.
- One-Dimensional Unitary Transform.
- Two-Dimensional Unitary Transform.
- The Discrete Cosine Transform.
- Bit Allocation and Transform Coding Gain.
- Optimal Transform Design and the KLT.
- DCT-Based Image Coders and the JPEG Standard.
- Vector Transform Coding.

b. Predictive Coding
- Overview.
- Optimal Predictor Design and Predictive Coding Gain.
- Spatial-Domain linear Prediction.
- Motion-Compensated Temporal Prediction.

c. Video Coding Using Temporal Prediction and Transform Coding
- Block-Based Hybrid Video Coding.
- Overlapped Block Motion Compensation.
- Coding Parameter Selection.
- Rate Control.
- Loop Filtering.

Video Compression Standards

a. Video Telephony with H.261 and H.263
- H.261 Overview.
- H.263 Highlights.
- Comparison.

b. Digital TV with MPEG-2
- Systems.
- Audio.
- Video.
- Profiles.

c. **Coding of Audiovisual Objects with PMEG-4**
 - MPEG-4 Profiles.
 - MPEG-4 Features.
 - MPEG-4 Object Based Orientation.

| Total | 40 |

References: