MACHINERY FAULT DIAGNOSIS AND SIGNAL PROCESSING

PROF. AMIYA RANJAN MOHANTY
Department of Mechanical Engineering
IIT Kharagpur

TYPE OF COURSE : Rerun | Elective | PG
COURSE DURATION : 12 Weeks (24 Jan' 22 - 15 Apr' 22)
EXAM DATE : 24 Apr 2022

PRE-REQUISITES : BE/B. Tech in Mechanical Engineering

INTENDED AUDIENCE : Students, Faculty Members, Industry Professionals

INDUSTRIES APPLICABLE TO : PSUs like SAIL, ONGC, BHEL, NALCO, EIL, RINL, BARC, Indian Railways, HAL, DRDO Organizations Private Industries like TATA Group, Jindals, Reliance, Birla Group

COURSE OUTLINE:
The subject of machinery condition monitoring has been recently receiving considerable attention in India owing to concerns related to equipment reliability and safety. This increasing interest is primarily due to the significant impact of economic changes and strong competition in the global market. This course will provide students/engineers/managers with the state of the art techniques in machinery condition monitoring along with the recent developments in the field of signal processing, thermography, ultrasonics apart from the traditional noise and vibration monitoring. There will be demonstration of realtime machinery health monitoring by various condition monitoring aspects.

ABOUT INSTRUCTOR:
Prof. A. R. Mohanty is a Professor and the Shyamal Ghosh and Sunanda Ghosh Chair Professor at the Mechanical Engineering Department of the Indian Institute of Technology Kharagpur with 30 years of experience in areas of noise control and machinery condition monitoring. He holds a PhD degree from the University of Kentucky, USA. He is a recipient of several awards, Fellow of the Indian National Academy of Engineering, Fellow of the Acoustical Society of India, Fellow of the Condition Monitoring Society of India, and the International Society of Engineering Asset Management. He has conducted around 100 sponsored research and industrial consultancy projects.

COURSE PLAN:

Week 1: Maintenance Principles, FMECA, Fault Prognosis

Week 2: Vibration Analysis, Experimental Modal Analysis, Rotor Dynamics

Week 3: Time domain Signal analysis, Data Acquisition, Filtering

Week 4: Fourier Series, FFT, Modulation and Sidebands

Week 5: Order Analysis, Orbits

Week 6: Instrumentation, Data Recording

Week 7: Vibration and Noise Monitoring

Week 8: Rotating Machines, Bearings and Gears

Week 9: Fans, Blowers, Pumps, IC Engines

Week 10: Motor Current Signature Analysis, Wear Debris and Oil Analysis

Week 11: NDT, Ultrasonics, EddyCurrent

Week 12: Case Studies, Failure Analysis