The understanding of the basic mechanism such as heat and mass transport with associated fluid flow including metallurgical transformation, distortion and residual stress generation in different manufacturing processes is the focus of this course. Understanding the complex interaction not only helps to develop mathematical model, it makes the foundation for analysis, numerical simulation at different scale and experimentation for different types of manufacturing processes. The development of computational models for a manufacturing process relies on mathematical expression of the governing mechanism. It helps to design relevant experiments and drives to find the data to be obtained. Mutual understanding between analytical/numerical and experimental results leads to better insight of the basic manufacturing processes that impact on the improvement of existing process and directs for the development of new process. However, this course is completely different from statistical or data driven modeling approach.

ABOUT INSTRUCTOR:

COURSE PLAN:

Week 1: Introduction to Manufacturing processes
Week 2: Physics of manufacturing processes
Week 3: Conventional machining
Week 4: Non-conventional machining
Week 5: Metal forming
Week 6: Welding
Week 7: Welding
Week 8: Casting and powder metallurgy
Week 9: Coating and additive manufacturing
Week 10: Heat treatment
Week 11: Micro/nano scale manufacturing
Week 12: Processing of non-metallic materials