INTRODUCTION TO MACHINING AND MACHINING FLUIDS

PROF. MAMILLA RAVI SANKAR
Department of Mechanical Engineering
IIT Tirupati

TYPE OF COURSE: Rerun | Elective | UG/PG
COURSE DURATION: 8 Weeks (18 Jan’ 21 - 12 Mar’ 21)
EXAM DATE: 21 Mar 2021

INDUSTRY SUPPORT: Oil India Ltd., ONGC, TATA motors, ISRO, BARC, DRDL, NTPC, CMTI, CMERI, CGCRI, Grind Master, NRL

COURSE OUTLINE:
Machining is one of the basic and very important courses for the mechanical undergraduate students. This process comes under the subtractive manufacturing processes where in material is removed. This course gives the basic understanding of the various machining processes and its physics.

ABOUT INSTRUCTOR:
Prof. Mamilla Ravi Sankar is currently an Assistant Professor in the Department of Mechanical Engineering, IIT Guwahati. He did his B.Tech from Sri Venkateswara University, Tirupati, and M.Tech as well as PhD from IIT Kanpur. His research group is focus on Sustainable Manufacturing, Eco-friendly Cutting fluids, Coatings, Advanced Manufacturing, Tribology and Rheology. MRS Lab also involves in development of lab scale Innovations to Commercial Manufacturing Products. He has published over 30 research articles in internationally reputed journals, 2 Patents, 2 Edited Books and 6 Book chapters.

COURSE PLAN:
Week 1: Introduction and Importance of Machining: Introduction to manufacturing, Top-down and bottom-up approaches, Machining and Various Machining Processes. Principles of Metal Cutting: Shear zone, Chip formation, chip thickness measurements, machining mechanics of ductile and brittle materials.

Week 3: Tribology, Surface roughness in Machining: Chip-tool tribology, tool-workpiece tribology, Sticking and sliding zone, types of lubrication, Surface roughness, Materials removal rate, Machinability. Thermal Aspects of Machining: Cutting temperature, Measurement of temperature, heat generation, heat distribution, metallurgical and microstructural study.

Week 5: Cutting Fluids: Classification, Functions, Types of lubrication, Cutting fluid additives, Emissions, Health Hazards, Rheology and Biodegradability. Cutting fluid application: Standoff distance, angle of impingement, contact angle, area of cooling, Solid lubricants. Eco-friendly cutting fluids: Development of eco-friendly cutting fluids, bio degradation of these fluids, COD, BOD, HRT, Advantages of sustainable cutting fluids over mineral oil based cutting fluids.

Week 6: Multipoint Machining Processes: Milling, Drilling, Broaching, Tapping, Sawing, Gear Cutting.

Week 8: Machining of Advanced Materials: Machining of Biomaterials, Aero Space materials, Smart Materials. Advances in Metal Cutting: Hard Machining, High Speed Machining, Diamond Turning, Double tool Machining, Machining with rotary tools, Thin wall machining, Laser Assisted Machining. Cutting fluids machining advanced materials: Cutting fluids for machining advanced materials, high speed machining, hard machining.