The present course material is an outcome of an elective course on "Rotor Dynamics" offered to undergraduate, graduate and postgraduate students at IIT Guwahati over last nine years. Moreover, it contains materials of some of the project works done by graduate students and case studies of industrial problems.

The very purpose of this course material is to give a basic understanding of the rotor dynamics phenomena with the help of simple rotor models and subsequently the modern analysis methods for real life rotor systems.

The modeling and analysis of rotor-bearing dynamics are now reached a mature state. In broad sense this area covers several categories namely modeling, analysis, identification and condition monitoring of rotor-bearing systems. The finite element (FE) method has been used extensively for modeling and analyses of rotors for the transverse and torsional vibrations.

Till today, the condition monitoring of rotor-bearing systems based on vibrations mainly concerned with the feature based fault detection and diagnostics. As a result of this the methods available so far are not reliable and fail-safe up to the expectation of fellow engineers working in the fields.

For model based condition monitoring of the rotor-bearing systems, identification methods for system parameters are under development. For the identification of rotor system parameters the literature available is not so rich and a lot of possibilities have been appeared in the literature.

This background will be helpful in the identification of rotorbearing system parameters and its use in futuristic model based condition monitoring and fault diagnostic and prognostics. The present course material compiles some of the available literature in a systematic and lucid form so as to boost research in the developing area of the rotor dynamics.

Lecture materials are supplemented by numerical examples and exercise (objective type and numerical descriptive type) problems. It is expected that with this course material, students will get sufficient exposure and motivation for doing research in the Theory and Practice of Rotor Dynamics and allied areas.

COURSE DETAIL

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Topic</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre-requisites:
- Mechanical Vibrations (undergraduate level)
- Finite Element Methods (for added advantage)

Additional Reading:
- Bureau of Indian Standard codes on Rotor Balancing

Hyperlinks:
- http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-%20Guwahati/ve/index.htm

Coordinators:
- Prof. Rajiv Tiwari
- Department of Mechanical Engineering
- IIT Guwahati
1. Single Mass Rotors

2. Gyroscopic Effects in Rotors

3. Torsional Vibrations

4. Transverse Vibrations

5. Bearings

6. Balancing of Rotors

7. Bearing Dynamic Coefficient Measurement

8. Instability in Rotors

9. Sub-Critical Phenomenon in Rotors

10. FEM Analysis of Rotors

11. Measurement & Signal Processing Techniques

12. Condition Monitoring of Rotors

References:

