PHASE EQUILIBRIUM THERMODYNAMICS

PROF. GARGI DAS
Department of Chemical Engineering
IIT Kharagpur

TYPE OF COURSE : Rerun | Core | UG
COURSE DURATION : 8 weeks (20 Jul’20 - 11 Sep’20)
EXAM DATE : 27 Sep 2020

INTENDED AUDIENCE : B.E/B.Tech
PRE-REQUISITES : Basic knowledge of Engineering Thermodynamics desirable
INDUSTRIES APPLICABLE TO : Refining and Petrochemical Industry (IOC, HPCL, BPCL etc.), G.A.I.L., O.N.G.C, Shell

COURSE OUTLINE :
This is an introductory course in Thermodynamics and is one of the basic subjects to understand interfacial mass transfer and separation processes like distillation, solvent extraction, etc. The course introduces the concepts of chemical potential and fugacity and emphasizes the principles governing equilibrium for single and multicomponent systems. It discusses ideal as well as non-ideal solutions and deals with the entire range of phase miscibility (completely miscible to totally immiscible). There is a well-balanced coverage of physical concepts, mathematical operations along with examples and exercise problems of practical importance. After completion of the course, the students will be able to apply the basic principles of thermodynamics, the laws, and the pertinent equations to engineering design of mass transfer equipment.

ABOUT INSTRUCTOR :
Prof. Gargi Das is Professor, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, West Bengal. She has been teaching thermodynamics for the past 16 years to the students of Chemical Engg and Biotechnology as a core course. Students from Mechanical Engineering, Agricultural Engineering and Chemistry have opted it as a breadth course. She has contributed to NPTEL through her video based and web based courses on Multiphase Flow and Thermodynamics. Her areas of expertise are Multiphase Flow, Transport phenomena, CFD and Process Intensi/fication. She has over 50 refereed research papers, two books and three book chapters.

COURSE PLAN :
Week 01 : Chemical Potential
Week 02 : Chemical Equilibrium
Week 03 : Fugacity
Week 04 : Ideal solution
Week 05 : Properties of solutions
Week 06 : Non ideal solution – activity coefficient – Part 1
Week 07 : Non ideal solution – activity coefficient – Part 2
Week 08 : Partially and completely immiscible systems, Hydrocarbon Thermodynamics