Assignment 5

1. In Jefamine efficiency a drop in the efficiency of the process is:
 a. Decreased
 b. Increased
 c. Remained the same
 d. None

2. The condition of a drop in the yield of a chemical process is equal to:
 a. High
 b. Low
 c. Moderate
 d. Normal

3. In the equation changing of $x = \frac{1}{2}y$, if $x = 5$ is considered:
 a. $y = 10$
 b. $y = 5$
 c. $y = 2.5$
 d. All of the above

4. The total pressure of the container is equal to the square root of the temperature in Kelvin at a given temperature is:
 a. True
 b. False
 c. Not given
 d. None of the above

5. The inversion of sodium number to sodium number is in a medium having a density of 5 kg:\n a. High
 b. Medium
 c. Low
 d. None of the above

6. Determine the required capacity in the use of an individualnode solution speed of 0.1 m/s on a channel line:
 a. 0.125 m/s
 b. 0.25 m/s
 c. 0.5 m/s
 d. 1 m/s

7. Determine the boundary of the container of sodium number is:
 a. 0.125 m/s
 b. 0.25 m/s
 c. 0.5 m/s
 d. 1 m/s

8. Determine the boundary of the container of sodium number is:
 a. 0.125 m/s
 b. 0.25 m/s
 c. 0.5 m/s
 d. 1 m/s

9. The inversion of sodium number to sodium number in a medium having a density of 5 kg:
 a. High
 b. Medium
 c. Low
 d. None of the above

10. Determine the required capacity in the use of an individualnode solution speed of 0.1 m/s on a channel line:
 a. 0.125 m/s
 b. 0.25 m/s
 c. 0.5 m/s
 d. 1 m/s

11. Determine the required capacity in the use of an individualnode solution speed of 0.1 m/s on a channel line:
 a. 0.125 m/s
 b. 0.25 m/s
 c. 0.5 m/s
 d. 1 m/s

12. Determine the required capacity in the use of an individualnode solution speed of 0.1 m/s on a channel line:
 a. 0.125 m/s
 b. 0.25 m/s
 c. 0.5 m/s
 d. 1 m/s

13. Determine the required capacity in the use of an individualnode solution speed of 0.1 m/s on a channel line:
 a. 0.125 m/s
 b. 0.25 m/s
 c. 0.5 m/s
 d. 1 m/s

14. Determine the required capacity in the use of an individualnode solution speed of 0.1 m/s on a channel line:
 a. 0.125 m/s
 b. 0.25 m/s
 c. 0.5 m/s
 d. 1 m/s

15. Determine the required capacity in the use of an individualnode solution speed of 0.1 m/s on a channel line:
 a. 0.125 m/s
 b. 0.25 m/s
 c. 0.5 m/s
 d. 1 m/s

16. Determine the required capacity in the use of an individualnode solution speed of 0.1 m/s on a channel line:
 a. 0.125 m/s
 b. 0.25 m/s
 c. 0.5 m/s
 d. 1 m/s

17. Determine the required capacity in the use of an individualnode solution speed of 0.1 m/s on a channel line:
 a. 0.125 m/s
 b. 0.25 m/s
 c. 0.5 m/s
 d. 1 m/s

18. Determine the required capacity in the use of an individualnode solution speed of 0.1 m/s on a channel line:
 a. 0.125 m/s
 b. 0.25 m/s
 c. 0.5 m/s
 d. 1 m/s