Assignment 7

1. Write the equation to model a composite heating/cooling process:

 \[\text{Temperature} = \frac{1}{\text{Heat Transfer Coefficient} \times \text{Surface Area} \times \text{Mass Flow Rate}} \]

2. Write the equation for a simple heat exchanger:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

3. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

4. A simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

5. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

6. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

7. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

8. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

9. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

10. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

11. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

12. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

13. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

14. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

15. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

16. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

17. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

18. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

19. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

20. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

21. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

22. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

23. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

24. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

25. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

26. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

27. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

28. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

29. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]

30. Write the equation for a simple heat exchanger with a temperature difference:

 \[\text{Temperature} = \frac{\text{Heat Capacity} \times \text{Temperature Difference}}{	ext{Heat Transfer}} \]