Assignment 5

Due on 2019-10-05, 23.59 IST.

The data set for this assignment has passed, and per our records you have not submitted this assignment.

1. Due to environmental sound in a large space, the phenomenon of reverberating sound leads to
 - Refraction and room gain
 - Reflection and standing waves
 - Reverberation and Resonance
 - Relections and refraction
 - The power is increased.
 - Acoustics Answer:
 - Reverberation and room gain

2. While designing the shape of an auditorium on the acoustical consideration of an architect to
 - Minimise the distance between sound source, audience, and maximise distance with reflective walls
 - Minimise the distance between sound source, audience, and minimise distance with reflective walls
 - Minimise the distance between sound source and audience
 - The power is increased.
 - Acoustics Answer:
 - To minimise the distance between sound source, audience, and the reflective walls

3. The correct distance between chorus, audience, and the reflective walls
 - Acoustic purpose of placing the auditorium door
 - To bring audience closer to stage and increase intimacy
 - To have better clarity
 - To increase the volume of the hall
 - To have better visibility.
 - The power is increased.
 - Acoustics Answer:
 - To bring audience closer to stage and increase intimacy

4. Introduction of barriers in an auditorium helps to compensate the distance of sound heard but in this process
 - decreases both the volume of the hall and the reach of the sound below the hall
 - increases the height of the hall and decreases the reach of sound below the hall
 - increases the volume and decreases the height
 - obstructs the direct reach of sound to the audience in the hall
 - The power is increased.
 - Acoustics Answer:
 - Increases the height of the hall and decreases the reach of sound below the hall

5. To avoid fluttering sound in the Symphony hall the balconies were
 - Narrow and along the sides
 - Wide and along the sides
 - At the back of the hall
 - Distributed all around
 - The power is increased.
 - Acoustics Answer:
 - Narrow and along the sides

6. Early Decay Time refers to
 - 10 milliseconds after the impulse from the source
 - Time required for complete decay of source sound
 - Time required to stop sound intensity level by 10 decibels
 - One-sixth of the reverberation time of the hall
 - The power is increased.
 - Acoustics Answer:
 - One-sixth of the reverberation time of the hall

7. Choose the correct matching of the shape of halls with the symbols
 - (A) T-shaped hall (B) Oval shape (C) U-shaped hall (D) True box
 - (A) Symphony Hall (B) Concert Hall (C) Forum Hall (D) Walt Disney Hall
 - (A) True box (B) Oval shape (C) U-shaped hall (D) T-shaped hall
 - 2 points
 - Acoustics Answer:
 - (A) Symphony Hall (B) Concert Hall (C) Forum Hall (D) Walt Disney Hall

8. Which of the following options are true for auditorium settings?
 - Multiple fast reflecting surfaces at different angles or a polished single wall surface because
 - The reflective sound to reach the rear pavilion faster
 - Reflected sound travels faster than the reflected sound due to art and lighting reflection
 - Sound is reflected inside the auditorium due to corner bounce wall treatment
 - The power is increased.
 - Acoustics Answer:
 - (A) T-shaped hall (B) Oval shape (C) U-shaped hall (D) T-shaped hall

9. Which of the following options are true for auditorium settings?
 - Reflective sound bounces better than another non-reflective sound due to corner bounce wall treatment
 - The areas within an enclosed space not receiving sound could be
 - Front seats where reach of sound is minimum
 - Back seats where sound converges due to corner bounce wall treatment
 - Around seats where sound converges due to corner bounce wall treatment
 - The power is increased.
 - Acoustics Answer:
 - (A) T-shaped hall (B) Oval shape (C) U-shaped hall (D) T-shaped hall

10. The acoustics and soundings of the Walt Disney Hall were made of what kind of surfaces?
 - (A) Concrete and concrete, respectively
 - (B) Concrete and concrete, respectively
 - (C) Concrete and concrete, respectively
 - (D) Concrete and concrete, respectively
 - 2 points
 - Acoustics Answer:
 - (A) Concrete and concrete, respectively